Bài 6. Tìm x , y biết : và x + y = 70:
Bài 7: Tìm tỉ số , biết x, y thoả mãn:
Bài 8: Tìm tập các giá trị của x biết:
Bài 9. Tìm x, biết:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11:
Ta có: \(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)
hay \(n\in\left\{0;-2;2;8;-8\right\}\)
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
bài 1:
a, \(x=6;y=4\) được \(4=k6\Rightarrow=\frac{4}{6}=\frac{2}{3}\)
b, \(k=\frac{2}{3}\) được \(y=\frac{2}{3}x\)
c, được \(k=\frac{2}{3}\Rightarrow y=\frac{2}{3}x\) nên \(x=10\Leftrightarrow y=3,3\)
bài 2:
a, x và y tỉ lệ nghịch với nhau nên \(y=\frac{a}{x}\left(a\ne0\right)\)
đề ra, có \(x=8\Leftrightarrow y=15\)
\(\Rightarrow15=\frac{a}{8}\)
\(\Rightarrow a=120\)
thay a = 120 vào công thức \(y=\frac{a}{x}\) biểu diễn được y theo x: \(y=\frac{120}{x}\)
b, x và y tỉ lệ nghịc với nhau nên \(x=\frac{a}{y}\left(a\ne0\right)\)
đề ra, có \(x=8\Leftrightarrow y=15\)
\(\Rightarrow8=\frac{a}{15}\)
\(\Rightarrow a=120\)
vậy hệ số tỉ lệ của x đối với y là 120
c, với x = 6 thì \(y=\frac{120}{6}=20\)
với x = 10 thì \(y=\frac{120}{10}=12\)
bài 1:
a, x=6;y=4x=6;y=4 được 4=k6⇒=46=234=k6⇒=46=23
b, k=23k=23 được y=23xy=23x
c, được k=23⇒y=23xk=23⇒y=23x nên x=10⇔y=3,3x=10⇔y=3,3
bài 2:
a, x và y tỉ lệ nghịch với nhau nên y=ax(a≠0)y=ax(a≠0)
đề ra, có x=8⇔y=15x=8⇔y=15
⇒15=a8⇒15=a8
⇒a=120⇒a=120
thay a = 120 vào công thức y=axy=ax biểu diễn được y theo x: y=120xy=120x
b, x và y tỉ lệ nghịc với nhau nên x=ay(a≠0)x=ay(a≠0)
đề ra, có x=8⇔y=15x=8⇔y=15
⇒8=a15⇒8=a15
⇒a=120⇒a=120
vậy hệ số tỉ lệ của x đối với y là 120
c, với x = 6 thì y=1206=20y=1206=20
với x = 10 thì y=12010=12
Bài 2:
Với x,y,z,t là số tự nhiên khác 0
Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)
=> M không là số tự nhiên.
Bài 1:
Ta có:
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\)
\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 4:
a. $y=kx$. Thay $x=5; y=3$ vào thì:
$3=k.5\Rightarrow k=\frac{3}{5}$
b. Khi $x=10$ thì: $y=\frac{3}{5}x=\frac{3}{5}.10=6$
c. Khi $y=\frac{-3}{4}$ thì: $\frac{-3}{4}=\frac{3}{5}x$
$\Rightarrow x=\frac{-3}{4}: \frac{3}{5}=\frac{-5}{4}$
Bài 3:
a. $y=kx$. Thay $x=6$ và $y=4$ thì:
$4=k.6\Rightarrow k=\frac{4}{6}=\frac{2}{3}$
b. Khi $x=-20$ thì: $y=\frac{2}{3}x=\frac{2}{3}.(-20)=\frac{-40}{3}$
c. Khi $y=\frac{1}{6}$ thì:
$\frac{1}{6}=\frac{2}{3}x\Rightarrow x=\frac{1}{6}: \frac{2}{3}=\frac{1}{4}$
bài 1:
x,y tỉ lệ nghich với 3,4
\(\Rightarrow\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
=> x=2.4=8
y=2.3=6
bài 2:
x và y tỉ lệ nghịch với 6 và 8
=>\(\frac{x}{8}=\frac{y}{6}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)
=>x=-5.8=-40
y=-5.6=-30