K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: Xét ΔCAB có 

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BM và PN=BM

hay BMNP là hình bình hành

21 tháng 11 2021

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

21 tháng 11 2021

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P

13 tháng 10 2019

Tự vẽ hình nhé bạn

a) * Xét \(\Delta\)ABC có :

M là trung điểm AB

N là trung điểm BC

\(\Rightarrow\)MN là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)MN // AC hay MN // AQ ( 1 )

* Xét \(\Delta\)ABC  có :

Q là trung điểm AC 

N là trung điểm BC

\(\Rightarrow\)QN là đường trung bình của \(\Delta\)ABC 

\(\Rightarrow\)QN // AB hay QN // AM ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Tứ giác AQNM là hình bình hành mà có một góc vuông nên nó là hình chữ nhật.

b) Dễ thấy : \(\Delta\)AIM = \(\Delta\)BNM ( c - g - c )

\(\Rightarrow\)Góc AIM = Góc BNM ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên IA // BN ( 3 )

Dễ thấy : \(\Delta\)KAQ = \(\Delta\)NCQ ( c - g - c )

\(\Rightarrow\)Góc AKQ = Góc CNQ ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AK // NC ( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)Ba điểm I, A, K thẳng hàng ( theo tiên đề Ơ - clit )

c) Ta có :

AI = BN ( cmt ) và AK = NC ( cmt )

Mà BN = NC nên AI = AK 

13 tháng 10 2019

ủa hình như góc AIM với góc BNM đâu có so le trong ?

a: Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN//AQ và MN=AQ

=>AMNQ là hình bình hành

mà góc QAM=90 độ

nên AMNQ là hình chữ nhật

b: Xét ΔANI có

AB vừa là đường cao, vừa là trung tuyến

nên ΔANI cân tại A
=>AB là phân giác của góc NAI(1)

Xét ΔANK có

AC vừa là đường cao, vừa là trung tuyến

nên ΔANK cân tại A

=>AC là phân giác của góc NAK(2)

Từ (1) và (2) suy ra góc KAI=2*90=180 độ

=>K,A,I thẳng hàng

c: Vì K,A,I thẳng hàng

nên AK=AI

nên A là trung điểm của KI

a: Xét ΔPRQ có

E là trung điểm của PR

F là trung điểm của QR

Do đó: EF là đường trung bình của ΔPRQ

Suy ra: FE//PQ

hay PQFE là hình thang