Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có
P là trung điểm của BC
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//BM và PN=BM
hay BMNP là hình bình hành
Answer:
Bài 7:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)
\(\Leftrightarrow\widehat{A}=90^o\)
Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)
\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)
\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)
Answer:
Bài 8:
a/ P là trung điểm BC (giả thiết)
N là trung điểm AC (giả thiết)
=> NP là đường trung bình
=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)
Mà M là trung điểm của AB (giả thiết)
=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)
Từ (1) và (2) => NP // MB và NP = MB
=> Tứ giác BMNP là hình bình hành
b/ Ta có: AM = NP và NP // MB hay NP // AM
=> AMPN là hình bình hành
Mà ta có \(\widehat{BAC}=90^o\)
=> AMPN là hình chữ nhật
=> AM = PN, AN = MP
c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ
Tương tự ta có: PR vuông góc AB, RM = MP
Ta xét hai tam giác RAM và AQN:
AM = QN (=NP)
\(\widehat{AMR}=\widehat{QNA}=90^o\)
RM = AN (=NP)
=> Tam giác RAM = tam giác AQN (c.g.c)
\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)
Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)
Ta có: \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)
=> R, A, Q thẳng hàng
a: Xét tứ giác MBPA có
N là trung điểm của MP
N là trung điểm của BA
Do đó: MBPA là hình bình hành