Từ các chữ số 0,1,2,3,4,5,6 lập thành số tự nhiên chẵn có 5 chữ số phân biệt nhỏ hơn 25000. Tính số các số lập được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần lập là A = a 1 a 2 a 3 a 4 a 5 với 1 ≤ a 1 ≤ 2 .
+ Trường hợp 1: a 1 = 1.
Có 4 cách chọn a 5 và A 5 3 cách chọn các chữ số còn lại nên có 4 . A 5 3 số.
+ Trường hợp 2: a 1 = 2; a 2 lẻ.
Có 2 cách chọn a 2 , 3 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 3 . A 4 2 = 72 số.
+ Trường hợp 3: a 1 = 2; a 2 chẵn.
Có 2 cách chọn a 2 , 2 cách chọn a 3 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 2 . A 4 2 = 48 số.
Vậy có 240 + 72 + 48 = 360 số
Đáp án A
Đáp án A
Gọi số cần lập là A = a 1 a 2 a 3 a 4 a 5 ¯ với 1 ≤ a 1 ≤ 2
TH1: a 1 = 1
Có 4 cách chọn a 5 và A 5 3 cách chọn các chữ số còn lại nên có 4 A 5 3 số
TH2: a 1 = 2 , a 2 ∈ 1 ; 3
Có 3 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2.3. A 4 2 số.
TH3: a 1 = 2 , a 2 = 0
Có 2 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2. A 4 2 số
Vậy có 336 số
Đáp án A
Gọi số cần lập là A = a 1 a 2 a 3 a 4 a 5 ¯ với 1 ≤ a 1 ≤ 2
TH1: a 1 = 1
Có 4 cách chọn a 5 và A 5 3 cách chọn các chữ số còn lại nên có 4 A 5 3 số.
TH2: a 1 = 2 , a 2 ∈ 1 ; 3
Có 3 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2.3. A 4 2 số.
TH3: a 1 = 2 , a 2 = 0
Có 2 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2. A 4 2 số.
Vậy có 336 số
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Gọi số cần lập là \(\overline{abcd}\)
TH1: \(a=1\)
\(\Rightarrow\) Bộ bcd có \(A_6^3=120\) số
TH2: \(a=2\Rightarrow b=0\) \(\Rightarrow c=1\)
d có 4 cách chọn \(\Rightarrow4\) số
\(\Rightarrow120+4=124\) số
Gọi số cần lập là \(\overline{abcde}\)
TH1: \(a=1\)
\(\Rightarrow e\) có 4 cách chọn (0;2;4;6)
Bộ bcd có \(A_5^3=60\) cách
\(\Rightarrow4.60=240\) số
TH2: \(a=2\) \(\Rightarrow b< 5\)
- Nếu \(b=\left\{0;4\right\}\) (2 cách) \(\Rightarrow\) e có 1 cách chọn (6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.1.12=24\) số
- Nếu \(b=\left\{1;3\right\}\) (2 cách) \(\Rightarrow\) e có 3 cách chọn (0;4;6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.3.12=72\) số
Tổng cộng: \(240+24+72=336\) số