1 ca nô chạy trên khúc sông dài 15 km. Thời gian cả đi và về mất 2 giờ. Tính vận tốc ca nô khi nước yên lặng biết vận tốc dòng nước là 4 km/h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi vận tốc thực của ca nô là x ( km/h ) ĐK: x>4
- Vận tốc của ca nô khi đi xuôi dòng là : x +4 (km/h)
- Vận tốc của ca nô khi ngược dòng là : x -4 (km/h)
- Vì tổng thời gian cả đi và về mất 2h nên ta có pt :
15/ (x +4 ) +15/ (x-4) = 2
(=) 15.(x+4) +15.(x-4) = 2.(x+4).(x-4)
(=) 15x-60+15x+60-2x²+32=0
(=) -2x²+30x+32=0
(=) x= 16 (TMĐK) và x=-1 (KTM)
Vậy vận tốc riêng của ca nô là 16km/h
Gọi vận tốc cano khi xuôi dòng là x+4 (km/h) (x>0)
Gọi vận tốc cano khi ngược dòng là x-4 (km/h) (x>4)
Theo đề bài ta có: \(\dfrac{15}{x+4}+\dfrac{15}{x-4}=2\)
Giải tìm ra x đó là vận tốc thực của cano :D
Gọi \(v_{cano}=a\left(km\text{/}h\right)\left(a>3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}v_{xuôi}=a+3\left(km\text{/}h\right)\\v_{ngược}=a-3\left(km\text{/}h\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t_{xuôi}=\dfrac{15}{a+3}\left(h\right)\\t_{ngược}=\dfrac{15}{a-3}\left(h\right)\end{matrix}\right.\)
Vì \(t=2h\)
\(\Rightarrow\dfrac{15}{a+3}+\dfrac{15}{a-3}=2\)
\(\Leftrightarrow15\left(a-3\right)+15\left(a+3\right)=2\left(a-3\right)\left(a+3\right)\\ \Leftrightarrow30a=2a^2-18\\ \Leftrightarrow2a^2-30a-18\\ \Leftrightarrow2\left(a^2-15a-9\right)=0\\ \Leftrightarrow a^2-15a+56,25-65,25\\ \Leftrightarrow\left(a-7,5\right)^2=65,25\\ \Leftrightarrow\left[{}\begin{matrix}a-7,5=\dfrac{3\sqrt{29}}{2}\\a-7,5=-\dfrac{3\sqrt{29}}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}a=\dfrac{15+3\sqrt{29}}{2}\left(TM\right)\\a=\dfrac{15-3\sqrt{29}}{2}\left(KTM\right)\end{matrix}\right.\)
Vậy vận tốc của cano là \(\dfrac{15+3\sqrt{29}}{2}\)
Gọi vận tốc của ca-nô là x ( km/h ) ( x > 3 )
Vận tốc của ca - nô khi xuôi dòng là x + 3 ( km/h)
Vận tốc của ca - nô khi ngược dòng là x - 3 ( km/h)
Thời gian ca - nô đi lúc xuôi dòng là \(\dfrac{15}{x+3}\left(h\right)\)
Thời gian ca - nô đi ngược dòng là \(\dfrac{15}{x-3}\left(h\right)\)
Vì thời gian đi và về là 2 giờ . Ta có PT
\(\dfrac{15}{x+3}+\dfrac{15}{x-3}=2\)
\(\Rightarrow15x-45+15x+45=2x^2-18\\ \Leftrightarrow2x^2=-18-45+45\\ \Leftrightarrow2x^2=-18\\ \Leftrightarrow x^2=-9\left(vô.nghiệm\right)\)
Gọi vận tốc thực của ca nô là x ( km/h ; x > 4 )
Vận tốc khi ca nô xuôi dòng = x + 4 (km/h)
Vận tốc khi ca nô ngược dòng = x - 4 (km/h)
Thời gian ca nô xuôi dòng = 136/x+4 (giờ)
Thời gian ca nô ngược dòng = 91/x-4 (giờ)
Tổng thời gian xuôi dòng và ngược dòng là 7h30' = 15/2h
=> Ta có phương trình : \(\frac{136}{x+4}+\frac{91}{x-4}=\frac{15}{2}\)
<=> \(\frac{136\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{91\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\frac{15}{2}\)
=> 15( x2 - 16 ) = 2( 227x - 180 )
<=> 15x2 - 454x + 120 = 0
Δ' = b'2 - ac = (-227)2 - 15.120 = 49 729
Δ' > 0, áp dụng công thức nghiệm thu được x1 = 30 (tm) ; x2 = 4/15 (ktm)
Vậy vận tốc thực của ca nô là 30km/h
Gọi vận tốc riêng của cano là \(x\left(km/h\right),x>4\).
Vận tốc khi cano đi xuôi dòng là: \(x+4\left(km/h\right)\).
Thời gian cano đi xuôi dòng là: \(\frac{120}{x+4}\left(h\right)\).
Vận tốc khi cano đi ngược dòng là: \(x-4\left(km/h\right)\).
Thời gian cano đi ngược dòng là: \(\frac{96}{x-4}\left(h\right)\).
Ta có phương trình:
\(\frac{96}{x-4}-\frac{120}{x+4}=1\)
\(\Rightarrow96\left(x+4\right)-120\left(x-4\right)=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+24x-880=0\)
\(\Leftrightarrow x=20\)(vì \(x>4\))
.
Vận tốc đi là x+2(km/h)
Thời gian cano đi hết khúc sông là:
\(\dfrac{20}{x+2}\left(h\right)\)
- Gọi vận tốc thực của ca nô là x ( km/h ) ĐK: x>4
- Vận tốc của ca nô khi đi xuôi dòng là : x +4 (km/h)
- Vận tốc của ca nô khi ngược dòng là : x -4 (km/h)
- Vì tổng thời gian cả đi và về mất 2h nên ta có pt :
15/ (x +4 ) +15/ (x-4) = 2
(=) 15.(x+4) +15.(x-4) = 2.(x+4).(x-4)
(=) 15x-60+15x+60-2x²+32=0
(=) -2x²+30x+32=0
(=) x= 16 (TMĐK) và x=-1 (KTM)
Vậy vận tốc riêng của ca nô là 16km/h
Chúc bạn học tốt!