Cho S = 1/101+1/102+...+1/300. Chứng minh rằng 1/4< S <91/330
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B bảo là anh đi làm xong hết rồi không có đi đâu mà con không nghe thế hả
S = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)+\left(\frac{1}{111}+...+\frac{1}{120}\right)+\left(\frac{1}{121}+...+\frac{1}{130}\right)\)
> \(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130}.10=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}>\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) (Dễ có: \(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))
=> S > \(\frac{1}{4}\) (1)
+) S = \(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\left(\frac{1}{115}+\frac{1}{116}\right)\) (Có 15 cặp)
= \(\frac{231}{101.130}+\frac{231}{102.129}+...+\frac{231}{115.116}=231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)
ta có nhận xét: tích 101.130 có giá trị nhỏ nhất. thật vậy:
Xét 102.129 = (101 + 1).(130 - 1) = 101.130 - 101 + 130 -1 = 101.130 + 28 > 101.130
Tương tự, các cặp còn lại . Do đó, ta có \(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
S=\(\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\) + \(\left(\frac{1}{111}+...+\frac{1}{120}\right)\) + \(\left(\frac{1}{121}+...+\frac{1}{130}\right)\)
> \(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130.10}=\)\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}\)> \(\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) ( TA CÓ:\(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))
\(\Rightarrow S>\frac{1}{4}\)(1)
+)S=\(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\) \(\left(\frac{1}{115}+\frac{1}{116}\right)\) (CÓ 15 Cặp)
=\(\left(\frac{231}{101.130}\right)+\left(\frac{231}{102.129}\right)+...+\)\(\left(\frac{231}{115.116}\right)\)=\(231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)
ta xét: tích 101.130 có giá trị nhỏ nhất,nên :
xét 101.129=(101+1).(101-1)=101.130-101+130-1=101.130+28>101.130
tương tự các cặp còn lại, vậy ta có:\(\frac{1}{101.130}+\frac{1}{120.129}+...+\frac{1}{115.116}< \frac{1}{101.130}.15\)
\(\Rightarrow S< 231.\frac{1}{101.130}.15=\frac{693}{2626}< \frac{91}{330}\left(2\right)\)
từ (1)và(2) \(\Rightarrow\)điều phải chứng minh
THANKS