K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

11 tháng 11 2018

Câu 1

t8-t2\(\frac{1}{2}\)=t8 - t4\(\frac{1}{4}\) + t4-t2+\(\frac{1}{4}\) = (t4 -\(\frac{1}{2}\) )2 + (t2-\(\frac{1}{2}\))2 luôn lớn hơn không do t4-1/2 khác t2-1/2 nên cả hai không thể đồng thời bằng 0

Câu 2:

\(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{6bc+3ac+2ab}{6abc}=0\)

=> 6bc+3ac+2ab=0

Có a+2b+3c=1=> (a+2b+3c)2=0=>a2+4b2+9c2+2(6bc+3ac+2ab)=1

=> a2+4b2+9c2 =1