Cho \(a,b,c\in R\) thỏa \(\left(a+b+c\right)^3=\left(a+b-c\right)^3+\left(b+c-a\right)^3+\left(c+a-b\right)^3\)Tính tích \(abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b+c+\sqrt{abc}=4\)
\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)
Tương tự:
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)
\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)
Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
\(\left(a+b+c\right)^3=\left(a+b+c\right)\left[\left(a+b-c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2-\left(a+b-c\right)\left(b+c-a\right)-\left(b+c-a\right)\left(c+a-b\right)-\left(a+b-c\right)\left(c+a-b\right)\right]\)\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-\left(a+b-c\right)^2-\left(b+c-a\right)^2-\left(c+a-b\right)^2+\left(a+b-c\right)\left(b+c-a\right)+\left(b+c-a\right)\left(c+a-b\right)+\left(a+b-c\right)\left(c+a-b\right)\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left[4ac+4bc-2\left(a^2-2ab+b^2\right)-2c^2-\left(a^2-2ac+c^2\right)+b^2-\left(a^2-2ab+b^2\right)+c^2-\left(b^2-2bc+c^2\right)+a^2\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+c^2-2ab-2bc-2ac\right]=0\)
Đến đây bí thật rồi TT
mày bị thần kinh à