Chứng minh các bất phương trình sau vô nghiệm:
a) (x-1)*(x-5)+10<0 b) x^2+2x<2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.
b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)
Chọn B và D
Phương trình B vô nghiệm vì \(5x^2+10\ge10>0\forall x\)
Phương trình C vô nghiệm vì \(x^2+6\ge6>-9\forall x\)
B và C
vì \(5x^2+10=0\Leftrightarrow5x^2=-10\Leftrightarrow x^2=-2\)(VL)
\(x^2+6=-9\Leftrightarrow x^2=-15\left(VL\right)\)
\(a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\)
\(=>bpt:x^2+2x+2\le0\left(vo-li\right)\)
=>bpt vô nghiệm
\(b,4x^2-4x+5=\left(2x-1\right)^2+4\ge4>0\)
\(=>bpt:4x^2-4x+5\le0\left(vo-li\right)\)
=>bpt vô nghiệm
a, \(< =>x^2+2x+1+1\le0\)
\(< =>\left(x+1\right)^2+1\le0\) vô nghiệm với mọi x thuộc R
b, \(< =>\left(2x-1\right)^2+4\le0\)vô nghiệm với mọi x thuộc R
D.\(x^2+5x+9< 0\)
\(x^2+5x+9=\left(x^2+2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)-\left(\dfrac{5}{2}\right)^2+9=\left(x+\dfrac{5}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Mà \(x^2+5x+9< 0\)
--> pt vô nghiệm
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Điều kiện xác định x ≥ –8
Ta có: nên với mọi x ≥ –8.
Do đó BPT vô nghiệm.
biến đổi tương đương là đc