Bài 1 : Độ dài 3 ca nhj của 1 tam giác tỉ lệ với 2;3;4 . Hỏi 3 chiều cao tương ứng 3 cạnh đó chiếm tỉ lệ vs số nào???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
1) Goi x,y,z lan luot la cac goc cua tam giac tren. ta lap duoc:
x/3=y/5=z/7
Gia xu 60 do la so do cua goc thu nhat thi ta suy ra: x/3=y/5=z/7=60/3=20
=> x=60 ; y=100 ; z=140
Do 60+100+140 khong bang 180 nen tam giac nay khong ton tai.
Gia xu 60 do la so do cua goc thu 2 thi suy ra: x/3=y/5=z/7=60/5=12
=> x=36 ; y=60 ; z=84
Do 36+60+84 bang 180 nen tam giac nay ton tai
Gia xu 60 la so do cua goc thu 3 thi suy ra: x/3=y/5=z/7=60/7
=> x=180/7 ; y=300/7 ; z=60
Do 180/7+300/7+60 khong bang 180 nen tam giac nay khong ton tai
Vay tam giac tren chi co the ton tai khi goc thu 2 hay goc ti le voi 5 cua no co so do la 60 do.
2) goi cac canh cua tam giac nay lan luot la a,b,c. Theo de bai ta co:
a=3k ; b=4k ; c=8k
Vi a+b ( hay 3k+4k=7k) < c ( hay 8k ) nen tam giac nay khong ton tai
Gọi 3 cạnh của tam giác a;b;c tương ứng với 3 đường cao là x;y;z
Theo bài ra ta có :
\(\frac{x+y}{3}=\frac{y+z}{4}=\frac{z+x}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x+y}{3}=\frac{y+z}{4}=\frac{z+x}{5}=\frac{2\left(x+y+z\right)}{3+4+5}=\frac{2\left(x+y+z\right)}{12}=\frac{x+y+z}{6}=k\)
\(=>x+y=3k\)
\(y+z=4k\)
\(z+x=5k\)
Và \(x+y+z=6k\)
\(\Rightarrow y=6k-3k=3k\)
\(x=5k-3k=2k\)
\(z=6k-5k=k\)
Ta có : \(a.x=b.y=c.z\)( Đều bằng 2 lần diện tích diện tích tam giác )
\(\Rightarrow a.2k=b.3k=c.k\)
\(\Rightarrow2a=3b=c\)
\(\Rightarrow\frac{2a}{6}=\frac{3b}{6}=\frac{c}{6}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{6}\)
Vậy 3 cạnh của tam giác là : 3:2:6
Gọi độ dài 3 cạnh của tam giác lần lượt là a, b, c ( \(a,b,c\inℕ^∗\))
chiều cao tương ứng với 3 cạnh của tam giác lần lượt là x, y, z ( \(x,y,z\inℕ^∗\))
Theo bài, ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)( \(k\inℕ^∗\))
\(\Rightarrow a=2k\); \(b=3k\)và \(c=4k\)
Ta có: \(S=\frac{a.x}{2}=\frac{b.y}{2}=\frac{c.z}{2}\)
\(\Rightarrow a.x=b.y=c.z\)\(\Rightarrow2k.x=3k.y=4k.z\)
\(\Rightarrow2x=3y=4z\)\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}=\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Vậy 3 chiều cao tương ứng lần lượt tỉ lệ với 6, 4, 3