cho tam giác ABC kẻ đường cao AH biết BH = 18cm CH = 32cm tính AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
Nguyễn Thảo Nguyên
em chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/99235669166.html
\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)
\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)
\(\Rightarrow AB=30\left(cm\right)\)
\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)
\(\Rightarrow AC=40\left(cm\right)\)
Xét tam giác AHB vuông tại H có:
AH2+HB2=AB2(định lý pythagore) (1)
Xét tam giác AHC vuông tại H có:
HA2+HC2=AC2 (định lý pythagore) (2)
Từ (1) và (2) ta cộng lại vế theo vế, có:
2AH2+BH2+CH2=AB2+AC2
<=>2AH2+BH2+CH2=BC2
<=> 2AH2+182+322=(18+32)2
<=>2AH2+1348=2500
<=>2AH2=2500-1348
<=>2AH2=1152
<=>AH2=1152:2
<=>AH2=576
<=>AH=\(\sqrt{576}\)
<=>AH=24(cm)
-Ta thay AH=24cm vào (1) ta có:
HB2+AH2=AB2
<=>182+242=AB2
<=>900=AB2
<=>\(AB=\sqrt{900}=30\)(cm)
-Ta thay AH=24cm vào (2) ta có:
HC2+HA2=AC2
<=>322+242=AC2
<=>1600=AC2
\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Vậy AB=30cm; AC=40cm
a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)
A B C H
(thêm kí hiệu góc vuông ở đỉnh A nx nha bạn, mình quên)
Cm:
Áp dụng định lí Py-ta-go:
Xét \(\Delta\)AHB có:
AH2 + BH2 = AB2 (1)
Xét \(\Delta\)AHC có:
AH2 + CH2 = AC2 (2)
Cộng (1) và (2) vế theo vế, ta được:
2AH2 + BH2 + CH2 = AB2 + AC2
<=> 2AH2 + BH2 + CH2 = BC2
<=> 2AH2 + 182 + 322 = (18+32)2
<=> 2AH2 + 1348 = 2500
<=> 2AH2 = 1152
<=> AH2 = 576
<=> AH = \(\sqrt{576}\)= 24 (cm)
Thay AH = 24 và BH = 18 vào (1) ta được:
242 + 182 = AB2
<=> 900 = AB2
<=> AB = \(\sqrt{900}\)= 30 (cm)
Thay AH = 24 và CH = 32 vào (2) ta được:
242 + 322 = AC2
<=> 1600 = AC2
<=> AC = \(\sqrt{1600}\)= 40 (cm)
Vậy AB = 30 cm ; AC = 40 cm
a) áp dụng đ/l pitago zô tam giác zuông abh ta đc
=> AB^2=AH^2+HB^2
=> AH^2=Ab^2-HB^2
=> AH=24
áp dụng dl pitago zô tam giác zuông ahc
=> AC^2=AH^2+HC^2
=> AC=40
b) Tco : CH+HB=32+18=50
Tam giac ABC có
\(\hept{\begin{cases}AB^2+AC^2=40^2+30^2=2500\\BC^2=50^2=2500\end{cases}}\)
=> \(AB^2+AC^2=BC^2\)
=> tam giác abc zuông
Ta có: BC=HB+HC=18+32=50
-Xét \(\Delta ABC\)có: BC2=AB2+AC2 (Theo định lý Py-ta-go)
Mà \(\hept{\begin{cases}AB^2=AH^2+HB^2\\AC^2=AH^2+HC^2\end{cases}}\)
=> BC2=AH2+HB2+AH2+HC2
=> 502=2AH2+182+322
=> 2500=2AH2+324+1024
=> 2500=2AH2+1348
=> 2AH2=1152
=> AH2=576
=> AH=24
=> \(\hept{\begin{cases}AB^2=AH^2+HB^2=24^2+18^2=900\\AC^2=AH^2+HC^2=24^2+32^2=1600\end{cases}}\)
=> AB=30
AC=40
Vậy AB=30 cm
AC=40cm