K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

https://hoc247.net/hoi-dap/toan-8/chung-minh-a-x-10-x-9-x-4-x-1-0-faq392123.html

16 tháng 8 2015

Ta có:

(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9 

Đặt x2-7x+6=y

<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0

29 tháng 7 2017

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

b/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

10 tháng 5 2016

\(<=>x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+\frac{3}{4}>0\)

\(<=>x\left(x-1\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)

\(<=>\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)

\(<=>\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}>0\)

Nhận xét:

\(\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)\ge0\left(1\right)\)

\(\left(x^4+x^2+1\right)\ge1=>-\frac{1}{4}\left(x^4+x^2+1\right)\ge-\frac{1}{4}\)

\(=>-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}\ge\frac{1}{2}\left(2\right)\)

Từ 1 và 2 => Tổng > 0 => ĐPCM

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

31 tháng 12 2016

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

<=> \(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=> (x + y)^2\(\ge\) 4xy

<=> x^2 + y^2 + 2xy - 4xy \(\ge\)0

<=> x^2 + y^2 - 2xy \(\ge\)0

<=> (x - y)^2 \(\ge\)0

=> đpcm