Cho \(\Delta ABC\)có 3 cạnh AB = 5cm, AC = 12cm, BC = 13cm
a) Xác định tâm đường tròn ngoại tiếp ABC
b) Tính khoảng cách từ tâm đường tròn đến dây AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)
Câu 1:
Xét ΔABC vuông tại A có
\(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{6}=\dfrac{4}{3}\)
=>\(AC=\dfrac{4}{3}\cdot6=8\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Câu 4:
a: Thay x=2 và y=5 vào y=(2m-1)x+3, ta được:
2(2m-1)+3=5
=>2(2m-1)=2
=>2m-1=1
=>2m=2
=>\(m=\dfrac{2}{2}=1\)
b: Khi m=1 thì \(y=\left(2\cdot1-1\right)x+3=x+3\)
Ban tu ve hinh nha
Goi O la tam duong tron ngoai tiep tam giac ABC , ke OD,OE,OF vuong goc voi AB,BC,AC
Do ABC la tam giac can nenA,O,E thang hang ( duong phan giac dong thoi la duong cao va trung tuyen )
=> AD=DB=15 cm , BE=EC=18 cm
Xet tam giac ABE vuong o E co \(AE=\sqrt{30^2-18^2}=24\) cm Dinh ly PYTAGO
Xet tam giac ADO vuong o D va tam giac AEB vuong o E co goc DAO= goc EAB
Suy ra tam giac ADO dong dang voi tam giac AEB (g-g)
=>\(\frac{AD}{AB}=\frac{OD}{BE}\) <=> \(\frac{15}{24}=\frac{OD}{18}=>OD=11,25cm\) =OF do ta giac abc can tai a
Xet tam giac ODB vuong tai D co \(OB=\sqrt{\left(11,25\right)^2+15^2}=18,75cm\) dinh ly pytago
Xet tam giac OBE vuong tai E co \(OE=\sqrt{\left(18,75\right)^2-18^2}=5.25cm\) Dinh ly PYTAGO
Vay khoang cach tu tam dong tron ngoai tiep tam giac ABC de 3 canh AB,AC,BC lan luot la 11,25 cm , 11,25 cm , 5,25 cm
STUDY WELL !!!
https://mathx.vn/uploads/ho-tro-hoc-tap/vip/images/Screenshot_38.png
a) Vẽ đường trung trực A H của cạnh B C . Qua trung điểm I của cạnh A B vẽ trung trực cạnh A B cắt A H tại O chính là tâm đường tròn ngoại tiếp của tam giác A B C Theo định lý pi ta go: A H 2 = A B 2 − B H 2 = 5 2 − 3 2 = 16 => A H = 4 Tam giác vuông A O I đồng dạng tam giác vuông A B H (chung góc A ) nên: A O A I = A B A H => R = A O = A B . A I A H = 5.2 , 5 4 = 3 , 125 b) Vì B D là đk nên tam giác A B D vuông A B D = 2 R = 6 , 26 . Theo Py ta go: A D 2 = B D 2 − A B 2 = 6 , 25 2 − 5 2 = 14 , 0625 => A D = 3 , 75 Tương tự tam giác C B D vuông C C D 2 = B D 2 − B C 2 = 6 , 25 2 − 6 2 = 3 , 0625 => C D = 1 , 75
a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A
nên tâm đường tròn ngoại tiếp ABC là trung điểm BC
b. khi đó R = BC/2 =13/2 cm
khoảng cách từ tâm đến AC là :
\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)