K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2020

\(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=25\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)

Đến đây thay Viet vào và xét 2 trường hợp: \(\left[{}\begin{matrix}x_1x_2\ge0\\x_1x_2< 0\end{matrix}\right.\) để phá trị tuyệt đối

27 tháng 4 2020

em cảm ơn nhiều ạ

9 tháng 3 2022

a, Xét tứ giác ADHE có ^ADH = ^AEH = ^DAE = 900

=> tứ giác ADHE là hcn 

=> AH = DE (2 đường chéo bằng nhau) 

b, Xét tam giác AHB và tam giác CHA ta có

^AHB = ^CHA = 900

^HAB = ^HCA ( cùng phụ ^HAC ) 

Vậy tam giác AHB~ tam giác CHA (g.g)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=BH.CH\)

c, Xét tam giác AHD và tam giác ABH có 

^ADH = ^AHB = 900

^A _ chung 

Vậy tam giác AHD ~ tam giác ABH (g.g)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\Rightarrow AH^2=AD.AB\)(1) 

tương tự tam giác AEH ~ tam giác AHC (g.g)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AH^2=AE.AC\left(2\right)\)

Từ (1) ; (2) suy ra \(AD.AB=AE.AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét tam giác ADE và tam giác ACB 

^A _ chung 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(cmt\right)\)

Vậy tam giác ADE ~ tam giác ACB (c.g.c)

 

3 tháng 8 2021

\(\dfrac{2A}{2A+16.5}=\dfrac{43,66}{100}\)

=> \(200A=43,66.\left(2A+16.5\right)\)

=> \(200A-87,32A=3492,8\)

=> \(112,68A=3492,8\)

=> A= 31 

 

3 tháng 8 2021

Cái đó là tìm ra A là bn ạ

14 tháng 3 2022

`x - 3/3 = 4 - 1 - 2x/5`

`->` `x = (-5)`

\(\dfrac{x-3}{3}=4-\dfrac{1-2x}{5}\)

=>5(x-3)=60-3(1-2x)

=>5x-15=60-3+6x

=>5x-15=6x+57

=>6x+57=5x-15

hay x=-72(nhận)

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

10 tháng 9 2021

3.

\(4sinx+cosx+2cos\left(x+\dfrac{\pi}{3}\right)=2\)

\(\Leftrightarrow4sinx+cosx+cosx-\sqrt{3}sinx=2\)

\(\Leftrightarrow\left(4-\sqrt{3}\right)sinx+2cosx=2\)

\(\Leftrightarrow\sqrt{23-4\sqrt{3}}\left(\dfrac{4-\sqrt{3}}{\sqrt{23-4\sqrt{3}}}sinx+\dfrac{2}{\sqrt{23-4\sqrt{3}}}cosx\right)=2\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}\right)=\dfrac{2}{\sqrt{23-4\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}=\pm arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

10 tháng 9 2021

4.

\(sinx+2cos\left(x+\dfrac{\pi}{3}\right)+4sin\left(x+\dfrac{\pi}{6}\right)+cosx=4\)

\(\Leftrightarrow sinx+cosx-\sqrt{3}sinx+2\sqrt{3}sinx+2cosx+cosx=4\)

\(\Leftrightarrow\left(1+\sqrt{3}\right)sinx+4cosx=4\)

\(\Leftrightarrow\sqrt{20+2\sqrt{3}}\left(\dfrac{1+\sqrt{3}}{\sqrt{20+2\sqrt{3}}}sinx+\dfrac{4}{\sqrt{20+2\sqrt{3}}}cosx\right)=4\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}\right)=\dfrac{4}{\sqrt{20+2\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}=\pm arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

3 tháng 6 2023

\(\Delta'=m^2-m^2+2m-4=2m-4\)

Để phương trình có hai nghiệm thì:

\(2m-4\ge0\Rightarrow m\ge2\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-2m+4\end{matrix}\right.\)

Theo đề: \(\left(x_1+1\right)\left(x_2+1\right)=9\)

\(\Leftrightarrow x_1x_2+x_1+x_2+1=9\)

\(\Leftrightarrow m^2-2m+4+2m=8\)

\(\Leftrightarrow m^2-4=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(loại\right)\\m=2\left(nhận\right)\end{matrix}\right.\)

Vậy m = 2 là giá trị cần tìm.