ai làm hộ mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+EC=DE
nên DE=AC+EB
(x+1)+(x+4)+(x+7)+....+(x+28)=155
=>10x+(1+4+....+28)=155
=>10x+[10(1+28)]/2=155
=>10x+145=155
=>10x=10
=>x=1
đầu tiên là ta tìm có bao nhiêu số x , ta lấy (28-1):3+1 = 10 (số) . Vậy là có 10 số x và 10 số cộng với x . Rồi ta sẽ tìm tổng của các số cộng với x , ta có : (28+1)x10:2= 145 . Sau đó ta lấy tổng của x và các số kia trừ đi tổng các số cộng với x , đó là : 155-145=10 . Rồi ta lấy 10 đó chia cho 10 số x để tìm 1 số x , ta có : 10:10=1 . Vậy x=1. (nếu đúng thì tick cho tớ nhé ! ) cái này là tớ tự suy luận mà ra .
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
1 , I am neither rich nor poor
2 , She l.i.k.es neither the city nor the country
3 , Neither I nor She is happy
4 , Neither You and She is ready
5 , Neither my mom nor you are fat
6 , She neither write nor phone
7 , He do neither Maths exercise nor English exercise
8 , Neither Jim and Carol has got a car
9 , Neither the teacher nor we come on time
10 , Neither my father nor my mother loves Vietnamese films
* Nếu sai thì thông cảm ạ :) *
\(A=-2\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\)
\(=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\)
\(maxA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
bạn có thể trả lời chi tiết câu 1 đc không ạ