Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Áp dụng định lý Thales ta có:
\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)
b
Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)
PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)
MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)
\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)
\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )
Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.
Bài 8:
a: Ta có: \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\cdot\dfrac{x^4-2x^2+1}{2}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{2}\)
\(=\dfrac{x^2-x-2-x^2-x-2}{1}\cdot\dfrac{x-1}{2}\)
\(=\dfrac{-2x\cdot\left(x-1\right)}{2}=-x\left(x-1\right)\)
Bài 8:
a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^4-2x^2+1}{2}\left(đk:x\ne1,x\ne-1\right)\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x^2-1\right)^2}{2}=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{2}=\dfrac{-2x\left(x-1\right)}{2}=-x^2+x\)
b) \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=2\)(do đkxđ của A là \(x\ne1\))
\(A=-x^2+x=-2^2+2=-2\)
c) Do \(A=-x^2+x\in Z\forall x\in Z\)
\(\Rightarrow A\in Z\Leftrightarrow x\in Z\)
\(\left[a+\left(-b\right)\right]^2=\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(x-4\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\3\left(x-1\right)=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
\(A=-2\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\)
\(=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\)
\(maxA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
bạn có thể trả lời chi tiết câu 1 đc không ạ