K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(A=-2\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\)

\(=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\)

\(maxA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

24 tháng 10 2021

bạn có thể trả lời chi tiết câu 1 đc không ạ

11 tháng 2 2021

Sửa giúp mình là hình chiếu cạnh AC nhé

11 tháng 2 2021

Gọi H là hình chiếu của điểm A trên cạnh BC => HC là hình chiếu của cạnh AC trên cạnh huyền BC

Gợi ý: Dùng py-ta-go để tính AC rồi áp dụng công thức

SABC = 1/2*AB*AC = 1/2*AH*BC => AB*AC = AH*BC

Thay số vào rồi tìm AH sau đó lại dùng py-ta-go để tìm HC

a: =>x+2013=0

hay x=-2013

b: =>50-x=0

hay x=50

Bài 8:

a: Ta có: \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\cdot\dfrac{x^4-2x^2+1}{2}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{2}\)

\(=\dfrac{x^2-x-2-x^2-x-2}{1}\cdot\dfrac{x-1}{2}\)

\(=\dfrac{-2x\cdot\left(x-1\right)}{2}=-x\left(x-1\right)\)

2 tháng 9 2021

Bài 8:

a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^4-2x^2+1}{2}\left(đk:x\ne1,x\ne-1\right)\) 

\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x^2-1\right)^2}{2}=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{2}=\dfrac{-2x\left(x-1\right)}{2}=-x^2+x\)

b) \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=2\)(do đkxđ của A là \(x\ne1\))

\(A=-x^2+x=-2^2+2=-2\)

c) Do \(A=-x^2+x\in Z\forall x\in Z\)

\(\Rightarrow A\in Z\Leftrightarrow x\in Z\)

 

1: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-3x^2+27x-27-x^3+27+9x^2+18x+9=15\)

\(\Leftrightarrow45x=6\)

hay \(x=\dfrac{2}{15}\)

2: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow-25x=11\)

hay \(x=-\dfrac{11}{25}\)

3: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)

\(\Leftrightarrow x^3+64-x^3+25x=264\)

\(\Leftrightarrow25x=200\)

hay x=8

4: Ta có: \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)

\(\Leftrightarrow12x=84\)

hay x=7

6: Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=64\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=64\)

\(\Leftrightarrow12x^2=48\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

7: Ta có: \(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)

\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)

\(\Leftrightarrow-10x=-10\)

hay x=1

8: Ta có: \(\left(4x+1\right)^2-\left(2x+3\right)^2+5\left(x+2\right)^2+3\left(x-2\right)\left(x+2\right)=500\)

\(\Leftrightarrow16x^2+8x+1-4x^2-12x-9+5x^2+20x+20+3x^2-12=500\)

\(\Leftrightarrow20x^2+16x-500=0\)

\(\text{Δ}=16^2-4\cdot20\cdot\left(-500\right)=40256\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-8\sqrt{629}}{40}=\dfrac{-2-\sqrt{629}}{5}\\x_2=\dfrac{-16+8\sqrt{629}}{40}=\dfrac{-2+\sqrt{629}}{5}\end{matrix}\right.\)

9: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

Bài 3: 

1: \(35^2=1225\)

2: \(25^2=625\)

3: \(75^2=5625\)

4: \(95^2=9025\)

5: \(101\cdot99=9999\)

6: \(36\cdot44=1584\)

7: \(72\cdot68=4896\)

Bài 3: 

Xét ΔIAB có 

\(\widehat{AIB}+\widehat{IAB}+\widehat{IBA}=180^0\)

\(\Leftrightarrow\widehat{IAB}+\widehat{IBA}=115^0\)

hay \(\widehat{DAB}+\widehat{ABC}=230^0\)

Xét tứ giác ABCD có 

\(\widehat{D}+\widehat{C}+\widehat{DAB}+\widehat{CBA}=360^0\)

\(\Leftrightarrow\widehat{D}+\widehat{C}=150^0\)

mà \(\widehat{C}-\widehat{D}=10^0\)

nên \(2\cdot\widehat{C}=160^0\)

\(\Leftrightarrow\widehat{C}=80^0\)

\(\Leftrightarrow\widehat{D}=70^0\)