Tìm số tự nhiên có 3 chữ số xyz sao cho \(\sqrt[3]{\overline{xyz}}=x+y+z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho
Xét x3+xyz=x(x2+yz)=579 -->x lẻ.
Tương tự xét
y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài
Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 2:
Ta có: VP=1984
Vì 2x-2y=1984>0 =>x>y
=>VT=2x-2y=2y(2x-y-1)
pt trở thành:
2y(2x-y-1)=26*31
\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)
Từ pt (1) =>y=6
Thay y=6 vào pt (2) đc:
2x-6-1=31 => 2x-6=32
=>2x-6=25
=>x-6=5 <=>x=11
Vậy x=11 và y=6
Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)
\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)
Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)
Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25
Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)
\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)
Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5
Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5
Thử lại : \(\frac{1}{8}=0,125\)
\(\sqrt[3]{\overline{xyz}}=x+y+z\)
\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)
Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)
\(\Rightarrow\overline{xyz}-m⋮9\)
Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)
\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)
Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9
Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)
\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)
Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)
Thử lại ta thấy không thỏa mãn,loại
Nếu \(m-1⋮9\left(KTM\right)\)
Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)
Thử lại ta thấy thỏa mãn
Vậy số đó là 512