Chứng minh rằng:
1) 2+22+23+...+2100 chia hết cho 31.
2) 3+32+33+...+3^1998 chia hết cho 39.
Xin hãy giúp đỡ!
Chân thành cảm ơn mọi người!
Mình sẽ tích nếu các bạn trả lời sớm vì mình thật sự rất gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
( 10n ) chia het cho ( 5n - 3 )
=> ( 5n + 5n ) chia het cho ( 5n - 3 )
=> ( 5n - 3 + 5n - 3 + 6 ) chia het cho ( 5n - 3 )
=> [ 2.(5n-3) + 6 ] chia het cho ( 5n - 3 )
Ma (5n-3) chia het cho (5n - 3 )
=> 2(5n-3) chia het cho (5n-3)
=> 6 chia het cho (5n-3)
=> 5n - 3 thuoc U(6)
=> 5n - 3 thuoc { 1; 2;3;6 }
=> 5n thuoc { 0; 3 }
=> n = 0
Vay n = 0
P/s tham khao nha
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)
Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.
\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).
1) Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)
hay \(A⋮3\)(đpcm)
2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{1996}.13\)
\(=39+3^3.39+...+3^{1995}.39\)
Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)
hay \(B⋮39\)(đpcm)
a) 2+22+23+...+2100
=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)
=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)
=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)
=2.31+26.31+....+296.31
=31(2+26+....+296)
=> đpcm