Tìm 3 số nguyên dương bik rằng tổng của 3 số ấy bằng nửa tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có \(a+b+c=\frac{abc}{2}\)
Giả sử \(a\le b\le c\) thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại )
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn )
a = 2, b = 2, c = 4 (Thỏa mãn )
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn )
5, ab = 2..........................................( Không thỏa mãn )
6, ab = 1 ..........................................( Không thỏa mãn )
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3 .
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có a + b + c = abc/2
Giả sử a≤b≤ca≤b≤c thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại)
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn)
a =2, b = 2, c = 4 (Thỏa mãn)
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn)
5, ab = 2..........................................( Không thỏa mãn)
6, ab = 1 ..........................................( Không thỏa mãn
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
học tốt