Baì 1
11/24 -(2/12 - 5/6)+3/12
bài 2
a) x/11=99/121 b)3/16 + x=7/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; (15 - \(\dfrac{121}{18}\)) : \(\dfrac{297}{27}\) - \(\dfrac{17}{8}\) : \(\dfrac{51}{40}\)
(\(\dfrac{270}{18}\) - \(\dfrac{121}{18}\)) : \(\dfrac{297}{27}\) - \(\dfrac{17}{8}\) x \(\dfrac{40}{51}\)
= \(\dfrac{149}{18}\) : \(\dfrac{297}{27}\) - \(\dfrac{5}{3}\)
= \(\dfrac{149}{18}\) x \(\dfrac{27}{297}\) - \(\dfrac{5}{3}\)
= \(\dfrac{149}{198}\) - \(\dfrac{5}{3}\)
= \(\dfrac{149}{198}\) - \(\dfrac{330}{198}\)
= \(\dfrac{-181}{198}\)
b; (- 3,2) x (- \(\dfrac{15}{64}\)) + (0,8 - \(\dfrac{34}{15}\)): \(\dfrac{11}{3}\)
= (\(\dfrac{-16}{5}\)) x ( \(\dfrac{-15}{64}\)) + (\(\dfrac{4}{5}\) - \(\dfrac{34}{15}\)): \(\dfrac{11}{3}\)
= \(\dfrac{3}{4}\) + (\(\dfrac{4}{5}\) - \(\dfrac{34}{15}\)): \(\dfrac{11}{3}\)
= \(\dfrac{3}{4}\) + (\(\dfrac{12}{15}\) - \(\dfrac{34}{15}\)) : \(\dfrac{11}{3}\)
= \(\dfrac{3}{4}\) + \(\dfrac{-22}{15}\) : \(\dfrac{11}{3}\)
= \(\dfrac{3}{4}\) - \(\dfrac{22}{15}\) x \(\dfrac{3}{11}\)
= \(\dfrac{3}{4}\) - \(\dfrac{2}{5}\)
= \(\dfrac{15}{20}\) - \(\dfrac{8}{20}\)
= \(\dfrac{7}{20}\)
1/ -7264 + (1543 + 7264)
=-7264 + 1543 + 7264=1543
2/ (144 – 97) – 144
=144-97-144=-97
3/ (-145) – (18 – 145)(Vì có dấu trừ ở trước ngoặc nên p đổi dấu)
=-145-18+145=-18
4/ 111 + (-11 + 27)
=111-11+27=137
\(\Leftrightarrow\left(\dfrac{x-11}{111}+1\right)+\left(\dfrac{x-12}{112}+1\right)=\left(\dfrac{x-23}{123}+1\right)+\left(\dfrac{x-24}{124}+1\right)\)
=>x+100=0
=>x=-100
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
Bài 46:
11: Ta có: \(-4\left|x-2\right|=-8\)
\(\Leftrightarrow\left|x-2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: x∈{0;4}
12: Ta có: \(5\left|x+2\right|=-10\cdot\left(-2\right)\)
\(\Leftrightarrow5\left|x+2\right|=20\)
\(\Leftrightarrow\left|x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy: x∈{-6;2}
13: Ta có: \(6\left|x-2\right|=18:\left(-3\right)\)
\(\Leftrightarrow6\left|x-2\right|=-6\)(1)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Rightarrow6\left|x-2\right|\ge0\forall x\)(2)
Ta có: -6<0(3)
Từ (1), (2) và (3) suy ra x∈∅
Vậy: x∈∅
14: Ta có:\(-7\left|x+4\right|=21:\left(-3\right)\)
\(\Leftrightarrow-7\left|x+4\right|=-7\)
\(\Leftrightarrow\left|x+4\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=1\\x+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy: x∈{-5;-3}
15: Ta có: \(4\left|x+1\right|=8\left(-2\right)-8\left(-5\right)\)
\(\Leftrightarrow4\left|x+1\right|=-16-\left(-40\right)\)
\(\Leftrightarrow4\left|x+1\right|=24\)
\(\Leftrightarrow\left|x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy: x∈{-7;5}
16: Ta có: \(3\left|x+5\right|=-9\)(4)
Ta có: |x+5|≥0∀x
⇒3|x+5|≥0∀x(5)
Ta có: -9<0(6)
Từ (4), (5) và (6) suy ra x∈∅
Vậy: x∈∅
17: Ta có: \(-8\left|x-3\right|=24-16:2\)
\(\Leftrightarrow-8\left|x-3\right|=16\)
\(\Leftrightarrow\left|x-3\right|=-2\)
mà |x-3|≥0>-2∀x
nên x∈∅
Vậy: x∈∅
18: Ta có: \(-3\left|x+6\right|=6\cdot2-9\)
\(\Leftrightarrow-3\left|x+6\right|=3\)
\(\Leftrightarrow\left|x+6\right|=-1\)
mà |x+6|≥0>-1∀x
nên x∈∅
Vậy: x∈∅
19: Ta có: \(5-\left|x+7\right|=4\)
\(\Leftrightarrow\left|x+7\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=-1\\x+7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-6\end{matrix}\right.\)
Vậy: x∈{-8;-6}
20: Ta có: \(12-\left|x+8\right|=10\)
\(\Leftrightarrow\left|x+8\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=2\\x+8=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-10\end{matrix}\right.\)
Vậy: x∈{-10;-6}