X^2-2(m-1)x+m+1=0
A; tìm m để pt có 2 nghiệm trái dấu
B: tìm m để pt có hai nghiệm dương phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=5^2-4\left(3m-1\right)=25-12m+4=-12m+29\)
Phương trình có hai nghiệm phân biệt khi -12m+29>0
=>-12m>-29
=>m<29/12
Để phương trình có nghiệm duy nhất thì -12m+29=0
=>m=29/12
Để phương trình vô nghiệm thì -12m+29<0
=>m>29/12
b: \(\text{Δ}=12^2-4\cdot2\cdot\left(-15m\right)=144+120m\)
Để phương trình có hai nghiệm pb thì 120m+144>0
=>m>-6/5
Để phương trình có nghiệm duy nhất thì 120m+144=0
=>m=-6/5
Để phương trình vô nghiệm thì 120m+144<0
=>m<-6/5
c: \(\text{Δ}=\left(2m-2\right)^2-4m^2=-8m+4\)
Để phương trình có hai nghiệm phân biệt thì -8m+4>0
=>-8m>-4
=>m<1/2
Để pt có nghiệm duy nhất thì -8m+4=0
=>m=1/2
Để pt vô nghiệm thì -8m+4<0
=>m>1/2
d/ \(\left\{{}\begin{matrix}\Delta=\left(m-3\right)^2+4\left(m+1\right)>0\\x_1+x_2=3-m< 0\\x_1x_2=-m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\left(luôn-đúng\right)\\m< 3\\m< -1\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)>0\\x_1+x_2=\frac{m-1}{2}< 0\\x_1x_2=\frac{m-1}{4}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-6m+5>0\\m< 1\\m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
f/ \(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\\x_1+x_2=\frac{2\left(2m-3\right)}{2-m}< 0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\\\left[{}\begin{matrix}m>2\\m< \frac{3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1< m< \frac{6}{5}\\2< m< 3\end{matrix}\right.\)
Để pt có 2 nghiệm âm pb \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta>0\\x_1+x_2< 0\\x_1x_2>0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-3m+1>0\\x_1+x_2=2\left(m-1\right)< 0\\x_1x_2=3m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+2>0\\m< 1\\m>\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\frac{1}{3}< m< \frac{5-\sqrt{17}}{2}\)
b/ \(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)>0\\x_1+x_2=2-m< 0\\x_1x_2=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m>0\\m< 2\\m>-1\end{matrix}\right.\) \(\Rightarrow-1< m< 0\)
c/ Giống phần b, chắc bạn ghi nhầm
g/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)
\(\Rightarrow m\ge3\)
h/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
f/
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)
Phương trình có hai nghiệm âm phân biệt hay dương phân biệt bạn?
Hay hai nghiệm trái dấu?