(2x-4)^6+(y-7)^12-21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2x-4\right)^6\ge0lđ\forall x.\)
\(\left(y-7\right)^{12}\ge0lđ\forall x\)
=> Q\(\ge-21\)
Vậy min Q=\(-21\Leftrightarrow x=2,y=7\)
Học tốt
1. \(3-|2x+1|=-5\)
\(\Rightarrow|2x+1|=8\)
\(\Rightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=7\\2x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{9}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{7}{2};-\frac{9}{2}\right\}\)
2.\(12+|3-x|=9\)
\(\Rightarrow|3-x|=-3\)
Mà \(|3-x|\ge0\forall x\)
\(\Rightarrow\)Vô lí
Vậy không có x
3.\(|x+9|=12+\left(-9\right)+2\)
\(\Rightarrow|x+9|=5\)
\(\Rightarrow\orbr{\begin{cases}x+9=5\\x+9=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-4\\x=-14\end{cases}}\)
Vậy \(x\in\left\{-4;-14\right\}\)
4.\(5x-16=40+x\)
\(\Rightarrow5x-x=40+16\)
\(\Rightarrow4x=56\)
\(\Rightarrow x=14\)
Vậy \(x=14\)
5.\(5x-7=-21-2x\)
\(\Rightarrow5x+2x=-21+7\)
\(\Rightarrow7x=-14\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
6.\(\left(2x-1\right)\left(y-2\right)=12\)
Vì \(x,y\inℤ\)nên \(2x-1;y-2\inℤ\)
\(\Rightarrow2x-1;y-2\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng : (em tự xét bảng nhé)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Lời giải:
$z=(x+y+z)-(x+y)=21-4=17$
$y=z-5=17-5=12$
$2k=z+x=(x+y+z)-y=21-12=9$
$k=\frac{9}{2}$
Không đáp án nào đúng.
\(1,2x+3x-4x=\left(-2\right)^3\)
<=>\(x=-8\)
\(2,x-2x=4^2+4^0\)
<=>\(-x=16+1\)
<=>\(-x=17\)
<=>\(x=-17\)
\(3,2^3x-3^2x=|12-21|\)
<=>\(-x=9\)
<=>\(x=-9\)
\(4,x-45=2x+54\)
<=>\(x-2x=54+45\)
<=>\(-x=99\)
<=>\(x=-99\)
\(5,5x-12+23=6^7:6^5\)
<=>\(5x+11=6^2\)
<=>\(5x+11=36\)
<=>\(5x=25\)
<=>\(x=5\)
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
\(a.\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow x=\dfrac{18\cdot5}{6}=15\\ \text{Vậy}\text{ }x=15.\)
\(b.\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow x=\dfrac{-21\cdot4}{3}=28\\ \text{ }\text{ }\text{ }\text{ }\text{Vậy }x=28.\)
\(c.\dfrac{x}{4}=\dfrac{21}{28}\Rightarrow x=\dfrac{21\cdot4}{28}=3\\ \text{Vậy }x=3.\)
\(d.\dfrac{-8}{2x}=\dfrac{3}{-9}\Rightarrow x=\dfrac{-8\cdot\left(-9\right)}{3}:2=12\\ \text{Vậy }x=12.\)
\(e.\dfrac{-4}{11}=\dfrac{x}{22}=\dfrac{40}{z}\\ \Rightarrow x=\dfrac{-4\cdot22}{11}=-8\\ \Rightarrow z=\dfrac{22\cdot40}{-8}=-110\\ \text{Vậy }x=-8;z=-110.\)
\(f.\dfrac{-3}{4}=\dfrac{x}{20}=\dfrac{21}{y}\\ \Rightarrow x=\dfrac{-3\cdot20}{4}=-15\\ \Rightarrow y=\dfrac{21\cdot20}{-15}=-28\\ \text{Vậy }x=-15;y=-28.\)
\(g.\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\\ \Rightarrow x=\dfrac{-4\cdot\left(-10\right)}{8}=5\\ \Rightarrow y=\dfrac{-7\cdot\left(-10\right)}{5}=14\\ \Rightarrow z=\dfrac{-7\cdot\left(-24\right)}{14}=12\\ \text{Vậy }x=5;y=14;z=12.\)
\(h.\dfrac{x}{4}=\dfrac{9}{x}\\ \Rightarrow x\cdot x=9\cdot4\\ \Rightarrow x\cdot x=36\\ \Rightarrow x\cdot x=6\cdot6\\ \text{Vậy }\text{cả hai }x=6.\)
a/ 5x +y -2x = 28 => 3x +y = 28
x/10 = y/6 = z/21 = 3x /30= y/6 = 3x +y / 36 = 28 /36 = 7/9
=> x= 70/9 ; y = 14/3 ; z= 49/3
b/
x/3 = y/4 => x/15 = y/20 [1]
y/5 = z/7 => y/20 = z/28 [2]
Từ [1] và [2] => x/15 = y/20 = z/28 = 2x /30 = 3y/60 = z/28 = [2x +3y - z] / [30+60-28]= 124 /62 = 2
=> x= 2 .15 = 30 ; y = 2x20 = 40 ; z= 2 . 28= 56