K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Ta xét \(\Delta=\left(m-1\right)^2-4\left(-2\right)\cdot2=\left(m-1\right)^2+16>0\)

Do \(\Delta>0\) nên phương trình luôn có nghiệm x1 và x2 phân biệt

Vậy ta có đpcm

Ta có a=2 ;b=m-1; c=-2

\(\Rightarrow\Delta=\left(m-1\right)^2+4.2.2>0\)

 Vậy pt có 2 nghiệm \(x_1,x_2\)phân biệt \(x_1=\frac{1-m+\sqrt{\left(m-1\right)^2+16}}{4},x_2=\frac{1-m-\sqrt{\left(m-1\right)^2+16}}{4}\)

Học tốt.

         

NV
21 tháng 3 2022

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

30 tháng 4 2020

\(\Delta=\left(m-1\right)^2-4.2.\left(-2\right)=\left(m-1\right)^2+16>0\)

nên PT luôn có 2 nghiệm phân biệt 

30 tháng 4 2020

Mình ms học lp 6 nên sai thông cảm

Xác định : a = 2 ; b = m-1 ; c = -2

Ta có : \(\Delta=b^2-4ac=\left(m-1\right)^2-4.2.\left(-2\right)\)

\(=\left(m-1\right)^2+16\)

Vì \(\hept{\begin{cases}\left(m-1\right)^2\ge0\\16>0\end{cases}=>\left(m-1\right)^2}+16>0\)

Nên pt có 2 nghiệm phân biệt 

17 tháng 6 2022

ko biết làm

NV
19 tháng 3 2021

1.

Đặt \(f\left(x\right)=\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1\)

\(f\left(x\right)\) xác định và liên tục trên R

\(f\left(x\right)\) có bậc 3 nên có tối đa 3 nghiệm (1)

\(f\left(0\right)=m^2+1>0\) ; \(\forall m\)

\(f\left(1\right)=\left(m^2+1\right)-2m^2-4+m^2+1=-2< 0\) ;\(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (2)

\(f\left(2\right)=8\left(m^2+1\right)-8m^2-8+m^2+1=m^2+1>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (3)

\(f\left(-3\right)==-27\left(m^2+1\right)-18m^2+12+m^2+1=-44m^2-14< 0\)

\(\Rightarrow f\left(-3\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-3;0\right)\) (4)

Từ (1); (2); (3); (4) \(\Rightarrow f\left(x\right)=0\) có đúng 3 nghiệm phân biệt

NV
19 tháng 3 2021

2.

Đặt \(t=g\left(x\right)=x.cosx\)

\(g\left(x\right)\) liên tục trên R và có miền giá trị bằng R \(\Rightarrow t\in\left(-\infty;+\infty\right)\)

\(f\left(t\right)=t^3+m\left(t-1\right)\left(t+2\right)\)

Hàm \(f\left(t\right)\) xác định và liên tục trên R

\(f\left(1\right)=1>0\)

\(f\left(-2\right)=-8< 0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(t\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm với mọi m

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.

PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$

Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$

Khi đó:

$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$

Để $3x_1-x_2=2$

$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$

$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$

5 tháng 3 2021

Câu này có cần tính viets ko ạ

 

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>(m+1)^2-2m>0`

`<=>m^2+2m+1-2m>0`

`<=>m^2+1>0` luôn đúng.

`a,\sqrt{\Delta}=\sqrt{m^2+1}`

`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`

`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`

`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`

`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta>0`

`<=>4(m+1)^2-8m>0`

`<=>4m^2+8m+4-8m>0`

`<=>4m^2+4>0` luôn đúng.

`a,\sqrt{\Delta}=2\sqrt{m^2+1}`

`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`

`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`

`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`

`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)