Một xe gắn máy đi từ A đến B dài 70km/h lúc về nó đi ằng đường khác dài 84km/h với vận tốc hơn vận tốc lúc đi là 6km/h. Tính vận tốc lúc đi biết thời gian lúc đi bằng thời gian lúc về
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi vận tốc lúc đi là x(km/h)
(Điều kiện: x>0)
Vận tốc lúc về là x+6(km/h)
Thời gian đi là \(\dfrac{70}{x}\left(giờ\right)\)
Thời gian về là \(\dfrac{84}{x+6}\left(giờ\right)\)
Theo đề, ta có phương trình: \(\dfrac{70}{x}=\dfrac{84}{x+6}\)
=>\(\dfrac{5}{x}=\dfrac{6}{x+6}\)
=>6x=5(x+6)
=>6x=5x+30
=>x=30(nhận)
Vậy: Vận tốc lúc đi là 30km/h
b: Xe máy đến B sau \(\dfrac{70}{30}=\dfrac{7}{3}h=2h20p\)
Xe máy đến B lúc: 8h+2h20p=10h20p
Gọi x (km/h) là vận tốc lúc đi (x>0)
=> Vận tốc lúc về là x+8 (km/h)
Thời gian lúc đi là 70/x (h)
Thời gian lúc về là 84/x-8 (h)
Ta có pt:
\(\frac{70}{x}\)x\(\frac{3}{2}\)= \(\frac{84}{x-8}\)
<=> x=40(km/h)
=> Vân tốc lúc về là 40-8=32 (km/h)
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
`Answer:`
Đặt vận tốc của xe gắn máy lúc đi là `x`
Vậy vận tốc của xe gắn máy lúc về là `x-6`
Thời gian đi là `\frac{35}{x}` giờ
Thời gian về là `\frac{42}{x-6}` giờ
Ta có `2/3.\frac{42}{x-6}=\frac{35}{x}`
`<=>\frac{84}{3x-18}=\frac{35}{x}`
`<=>84x-105x=-630`
`<=>-21x=-630`
`<=>x=30` \(km/h\)
Vậy vận tốc lúc quay về là: `x-6=30-6=24` \(km/h\)
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Gọi vận tốc của xe máy khi đi từ A đến B là x km/h (x>0)
Vận tốc lúc về là: (km/h)
Thời gian đi: giờ
Thời gian về: giờ
Do thời gian đi nhiều hơn thời gian về là 30 phút =1/2 giờ nên ta có pt: