Giải phương trình:
b)4x/x2+4x+3 - 1=6(1/x+3 - 1/2x+2)
c)x2-x-12=0
e)6x+22/x+2 - 2x+7/x+3=x+4/x^2+5x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: (2,3x-6,9)(0,1x+2)=0
=>2,3x-6,9=0 hoặc 0,1x+2=0
=>x=3 hoặc x=-20
c: =>(x-3)(2x+5)=0
=>x-3=0 hoặc 2x+5=0
=>x=3 hoặc x=-5/2
`a,x^2 +4x-5=0`
`<=> x^2-x+5x-5=0`
`<=> x(x-1)+5(x-1)=0`
`<=>(x-1)(x+5)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
`b, x^2 -x-12=0`
`<=> x^2 +3x-4x-12=0`
`<=>(x^2+3x)-(4x+12)=0`
`<=>x(x+3)-4(x+3)=0`
`<=>(x+3)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
`c, (2x-7)^2 - 6(2x-7)(x-3)=0`
`<=>(2x-7)(2x-7 -6x+18)=0`
`<=>(2x-7) ( -4x+11)=0`
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)
a: =>(x+5)(x-1)=0
=>x=1 hoặc x=-5
b: =>(x-4)(x+3)=0
=>x=4 hoặc x=-3
c: =>(2x-7)(2x-7-6x+18)=0
=>(2x-7)(-4x+11)=0
=>x=11/4 hoặc x=7/2
c)
\(x^2-x-12=0\\ \Leftrightarrow x^2+3x-4x-12=0\\ \Leftrightarrow x\cdot\left(x+3\right)-4\cdot\left(x+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
e)
\(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\\ \Leftrightarrow\frac{6x^2+40x+66}{x^2+5x+6}-\frac{2x^2+11x+14}{x^2+5x+6}-\frac{x+4}{x^2+5x+6}=0\\ \Leftrightarrow6x^2+40x+66-2x^2-11x-14-x-4=0\\ \Leftrightarrow4x^2+28x+48=0\\ \Leftrightarrow4\cdot\left(x^2+7x+12\right)=0\\ \Leftrightarrow4\cdot\left(x^4+4x+3x+12\right)=0\\ \Leftrightarrow4\cdot\left[x\cdot\left(x+4\right)+3\cdot\left(x+4\right)\right]=0\\ \Leftrightarrow4\cdot\left(x+4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+4=0\\x+3=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-4\\x=-3\end{matrix}\right.\)
b)
\(\frac{4x}{x^2+4x+3}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\\ \Leftrightarrow\frac{4x}{\left(x+1\right)\cdot\left(x+3\right)}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+1\right)}\right)\\ \Leftrightarrow4x-\left(x+1\right)\cdot\left(x+3\right)=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+2\right)}\right)\cdot\left(x+1\right)\cdot\left(x+3\right)\\ \Leftrightarrow-x^2-3=\frac{6x^2}{x+3}+\frac{24x}{x+3}+\frac{18}{x+3}-\frac{3x^2}{x+1}-\frac{12x}{x+1}-\frac{9}{x++1}\\ \Leftrightarrow-x^2\cdot\left(x+3\right)\cdot\left(x+1\right)-3\cdot\left(x+3\right)\cdot\left(x+1\right)=6x^2\cdot\left(x+1\right)+24x\cdot\left(x+1\right)+18\cdot\left(x+1\right)-3x^2\cdot\left(x+3\right)-12x\cdot\left(x+3\right)-9\cdot\left(x+3\right)\\ \Leftrightarrow-x^4-4x^3-6x^2-12x-9=3x^3+9x^2-3x-9\\ \Leftrightarrow-x^4-4x^3-6x^2-12x=3x^3+9x^2-3x\\ \Leftrightarrow x^4+4x^3+6x^2+12x+3x^3+9x^2-3x=0\\ \Leftrightarrow x^4+7x^3+15x^2+9x=0\\ \Leftrightarrow x\cdot\left(x^3+7x^2+15x+9\right)=0\\ \Leftrightarrow x\cdot\left(x^2+6x+9\right)\cdot\left(x+1\right)=0\\ \Leftrightarrow x\cdot\left(x+3\right)^2\cdot\left(x+1\right)=0\)
\(\Rightarrow x=\left[{}\begin{matrix}0\\-3\\-1\end{matrix}\right.\)