\(M=\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+1}.\frac{4^3-1}{4^3+1}....\frac{100^3-1}{100^3+1}\)
CHỨNG MINH M> 2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
M = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100
=> 3M= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99
=> 3M-M = 1 + ﴾2/3 ‐ 1/3﴿ + ﴾3/3² ‐ 2/3²﴿ +...+ ﴾100/3^99 ‐ 99/3^99﴿ ‐ 100/3^100
=> 2M= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 ‐ 100/3^100
Đặt N = 1/3 + 1/3² + 1/3³ +...+ 1/3^99
=> 3N = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98
=> 2N = 1 ‐ 1/3^99
=> N = ﴾1 ‐ 1/3^99﴿/2
Thay vào 2M
=> 2M= 1+ 1/2 ‐ 1/﴾2x3^99﴿ ‐ 100/3^100 < 1+ 1/2 = 3/2
=> M < 3/4
vậy...
Bài này công nhận là dễ , nhưng khi nãy bận ăn cơm , xin lỗi ha!! Hứa lần sau sẽ giải cho!!!
Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)
=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)
\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)
Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)
\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)
\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)
\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)