cho bt A = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
a) so sánh A với bt N = \(\frac{\sqrt{x}-3}{2\sqrt{x}}\)
b) Tìm x nguyên dương để bt \(\frac{2}{A}\) nhận giá trị nguyên
c) Tìm x thực để A nhận GT nguyên
giúp mình với ạ, mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
a) \(x\ne0;4\)
b) \(A=\left(1-\frac{4\sqrt{x}}{x-1}+\frac{1}{\sqrt{x}-1}\right):\frac{x-2\sqrt{x}}{x-1}\)
\(A=\left(\frac{x-1}{x-1}-\frac{4\sqrt{x}}{x-1}+\frac{\sqrt{x}+1}{x-1}\right)\cdot\frac{x-1}{x-2\sqrt{x}}\)
\(A=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\frac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
c) Phải là tìm giá trị nguyên của x chứ bạn ?
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)
Để A nguyên thì \(1⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(1\right)=1\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\) ( thỏa )
Vậy....
a) ĐKXĐ : x > 0 , x khác 1
b)Rút gọn
P = 6+ căn x trên căn x + 1
\(đk:x\ge0;x\ne1\)
\(x=\frac{1}{6-2\sqrt{5}}=>\sqrt{x}=\sqrt{\frac{1}{6-2\sqrt{5}}}=\frac{\sqrt{1}}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{1}{\left|\sqrt{5}-1\right|}=\frac{1}{\sqrt{5}-1}\)
thay \(x=\frac{1}{6-2\sqrt{5}}\left(tm\right)\)vào A có
A=\(\frac{\frac{1}{\sqrt{5}-1}+1}{\frac{1}{\sqrt{5}-1}-1}=\frac{\frac{1+\sqrt{5}-1}{\sqrt{5}-1}}{\frac{1-\sqrt{5}+1}{\sqrt{5}-1}}=\frac{\frac{\sqrt{5}}{\sqrt{5}-1}}{\frac{2-\sqrt{5}}{\sqrt{5}-1}}=\frac{\sqrt{5}}{\sqrt{5}-1}\cdot\frac{\sqrt{5}-1}{2-\sqrt{5}}=\frac{\sqrt{5}}{2-\sqrt{5}}=\frac{\sqrt{5}\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=-5-2\sqrt{5}\)
a, B= \(\frac{2\sqrt{x}+1}{x-7\sqrt{x}+12}-\frac{\sqrt{x}+3}{\sqrt{x}-4}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
<=> \(B=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
Để B có nghĩa
<=> \(\left\{{}\begin{matrix}\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\ne0\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}\ne4\\\sqrt{x}\ne3\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne16\\x\ne9\\x\ge0\end{matrix}\right.\)
<=> \(x\ge0,x\ne16,x\ne9\)
Vậy để B có nghĩa <=> \(x\ge0,x\ne16,x\ne9\)
b, Có B=\(\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)( đk: x\(\ge0\), \(x\ne16,x\ne9\))
<=> \(B=\frac{2\sqrt{x}+1-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}+1-x+9+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-5\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-2}{\sqrt{x}-4}\)