Cho tam giác ABC có AB bằng 15,3 cm , BC = 21,3 cm và CA = 31,2 cm Tính độ dài các cạnh của tam giác A phẩy B phẩy C phẩy (làm tròn đến chữ số thập phân thứ hai) biết tam giác A phẩy B phẩy C phẩy đồng dạng với tam giác ABC và canh A phẩy B phẩy lớn hơn cạnh AB là 10,8 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A'B'-10,8=AB\\hay A'B'-10,8=15,3\\ \Rightarrow A'B'=26,1\left(cm\right)\)
Tỉ số đồng dạng của \(\Delta ABC\) với \(\Delta A'B'C'\) là: \(\frac{AB}{A'B'}=\frac{15.3}{26.1}=\frac{17}{29}\)
\(\Rightarrow B'C'=\frac{BC}{\frac{17}{29}}=\frac{21.3}{\frac{17}{29}}=36,34\left(cm\right)\)
\(\Rightarrow C'A'=\frac{CA}{\frac{17}{29}}=\frac{31.2}{\frac{17}{29}}=53,22\left(cm\right)\)
Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\)
hay \(AB\simeq3,96\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{41}{57}\)
nên \(\widehat{B}\simeq46^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+46^0=90^0\)
hay \(\widehat{C}=44^0\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{B}+60^0=90^0\)
hay \(\widehat{B}=30^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{B}\)
\(\Leftrightarrow AC=10\cdot\tan30^0\)
hay \(AC=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(\dfrac{10\sqrt{3}}{3}\right)^2+10^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm
\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)
Áp dụng tính chất DTSBN , ta có :
\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)
Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)
Với CABC và CA'B'C' lần lượt là chu vi của tam giác ABC , A'B'C'
\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)
\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)
\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)