Cho tam giác ABC có AB bằng 15,3 cm , BC = 21,3 cm và CA = 31,2 cm Tính độ dài các cạnh của tam giác A phẩy B phẩy C phẩy (làm tròn đến chữ số thập phân thứ hai) biết tam giác A phẩy B phẩy C phẩy đồng dạng với tam giác ABC và canh A phẩy B phẩy lớn hơn cạnh AB là 10,8 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\)
hay \(AB\simeq3,96\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{41}{57}\)
nên \(\widehat{B}\simeq46^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+46^0=90^0\)
hay \(\widehat{C}=44^0\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{B}+60^0=90^0\)
hay \(\widehat{B}=30^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{B}\)
\(\Leftrightarrow AC=10\cdot\tan30^0\)
hay \(AC=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(\dfrac{10\sqrt{3}}{3}\right)^2+10^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm
\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)
Áp dụng tính chất DTSBN , ta có :
\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)
Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)
Với CABC và CA'B'C' lần lượt là chu vi của tam giác ABC , A'B'C'
\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)
\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)
\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)
Ta có:
\(A'B'-10,8=AB\\hay A'B'-10,8=15,3\\ \Rightarrow A'B'=26,1\left(cm\right)\)
Tỉ số đồng dạng của \(\Delta ABC\) với \(\Delta A'B'C'\) là: \(\frac{AB}{A'B'}=\frac{15.3}{26.1}=\frac{17}{29}\)
\(\Rightarrow B'C'=\frac{BC}{\frac{17}{29}}=\frac{21.3}{\frac{17}{29}}=36,34\left(cm\right)\)
\(\Rightarrow C'A'=\frac{CA}{\frac{17}{29}}=\frac{31.2}{\frac{17}{29}}=53,22\left(cm\right)\)