Hai số nguyên dương có tỉ số giữa số thứ nhất và số thứ hai là 4/7. Nếu lấy số thứ nhất chia cho 4, số thứ hai chia cho 5 thì thương thứ nhất bé hơn thương thứ hai 2 đơn vị. Tìm hai số đó, biết rằng các phép chia trên đều là phép chia hết.
Số bé là
Số lớn là
Gọi 2 số cần tìm lần lượt là a, b \(\left(a,b\inℕ^∗\right)\)
Tỉ số giữa số thứ nhất và số thứ 2 là \(\frac{4}{7}\)\(\Rightarrow\frac{a}{b}=\frac{4}{7}\)\(\Rightarrow\frac{a}{4}=\frac{b}{7}\)
Đặt \(\frac{a}{4}=\frac{b}{7}=k\left(k\inℕ^∗\right)\)\(\Rightarrow a=4k\)và \(b=7k\)
Nếu lấy số thứ nhất chia cho 4, số thứ 2 chia cho 5 thì thương số thứ nhất bé hơn thương thứ hai 2 đơn vị
\(\Rightarrow\)Ta có phương trình: \(\frac{7k}{5}-\frac{4k}{4}=2\)
\(\Leftrightarrow\frac{28k}{20}-\frac{20k}{20}=\frac{40}{20}\)\(\Leftrightarrow8k=40\)\(\Leftrightarrow k=5\)( thoả mãn điều kiện )
\(\Rightarrow a=4.5=20\); \(b=5.7=35\)
Vậy số bé là 20 và số lớn là 35