K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Tham khảo :

Ta có:

3a+2b⋮17

⇒9(3a+2b)⋮17⇔27a+18b⋮17(1)

Mặt khác: 17a+17b⋮17(2)

Từ (1);(2)⇒27a+18b−(17a+17b)⋮17

⇔10a+b⋮17

Ta có đpcm.

14 tháng 1 2018

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )

11 tháng 2 2020

nhỡ 2.(10a+b) và (3a+2b) không chia hết cho 17 nhưng khi 2.(10a+b)-(3a-2b) lại chia hết cho 17 thì sao

9 tháng 2 2016


Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
                                         = 17a 
          Vì 17chia hết cho17=> 17a chia hết cho 17
                                       => 2.(10a+b)- (3a +2b) chia hết cho 17
  Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
                     Mà (2,17) =1=> 10a+b chia hết cho 17
                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

9 tháng 2 2016

 

Bài 33: (có gạch đầu) 

-Gọi ac là số tự nhiên kém ab 1 đơn vị.

-Theo đề bài ta có:

         aacb=ab.91

         a.1100+c.10+b=910a+91b

         190a+10c=90b

 =>   19a+c=9b

 =>   19a=9b-c

Sau đó cậu nhận xét, chặn rồi thử, chọn vào là OK!

 

25 tháng 2 2018

+, 3a+2b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 27a + 18b chia hết cho 17

Mà 17a và 17b đều chia hết cho 17

=> 27a+18b-17a-17b chia hết cho 17

=> 10a+b chia hết cho 17

+, 10a+b chia hết cho 17

=> 10a+b+17a+17b chia hết cho 17

=> 27a+18b chia hết cho 17

=> 9.(3a+2b) chia hết cho 17

=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )

Vậy ............

Tk mk nha

2 tháng 7 2018

\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)

\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)

\(10a+b⋮17\)

\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)

\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)

\(\Rightarrow30a+20b-30a-3b⋮17\)

\(\Rightarrow17b⋮17\)

Có \(17⋮17\)nên \(10a+b⋮17\)

29 tháng 3 2016

Có 3a+2b :17

=> 3a+2b+17a :17

20a+2b :17

2(10a+b) :17. Mà ƯCLN(2;17)=1 => 10a+b :17

Ủng hộ mk nha

29 tháng 3 2016

ths bn nhá

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$

$\Rightarrow 20a+2b\vdots 17$

$\Rightarrow 2(10a+b)\vdots 17$

$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)

Ta có đpcm.

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60