giải bất phương trình sau:
\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\)
\(\Leftrightarrow\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>0\)
\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1+\dfrac{x+2950}{4}+1>0\)
\(\Leftrightarrow\dfrac{x+1+2953}{2953}+\dfrac{x+953+2001}{2001}+\dfrac{x+2950+4}{4}>0\)
\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)
Vì \(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\)
Nên \(x+2954>0\)
\(\Leftrightarrow x>-2954\)
Vậy ...
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>3\)
<=>\(\left(\dfrac{x+1}{2953}+1\right)+\left(\dfrac{x+953}{2001}+1\right)+\left(\dfrac{x+2950}{4}+1\right)>0\)
<=>\(\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)
<=>\(\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)
Vì \(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\) nên \(x+2954>0\) <=> \(x>-2954\)
KL: ...
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\\ \dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>-3+3\\ \dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\\ \left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\\ x+2954>0\\ x>-2954\)
a.2mx=0 <=> mx=0
•nếu m=0 thì nghiệm đúng với mọi x
•nếu \(m\ne0\) thì nghiệm đúng với x=0
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)
<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0
<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)
<=> x = 2004
Vậy S = {2004}
đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)
\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)
=> x=1
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}>-2\)
\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1>-2+1+1\)
\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2955}{2001}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}\right)>0\)
\(\Leftrightarrow x+2954>0\\ \Leftrightarrow x>-2954\)
Vậy.......
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
a, \(\Rightarrow\)\(1+\frac{x+3}{2011}\)\(+1+\frac{x+1}{2013}\)\(\ge1+\frac{x+10}{2004}+1+\frac{x+13}{2001}\)
\(\Rightarrow\)\(\frac{2011+x+3}{2011}+\frac{2013+x+1}{2013}\ge\frac{2004+x+10}{2004}+\frac{2001+x+13}{2001}\)
\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}\ge\frac{2014+x}{2004}+\frac{2014+x}{2001}\)
\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}-\frac{2014+x}{2004}+\frac{2014+x}{2001}\ge0\)
\(\Rightarrow\)\(\left(2014+x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}\right)\)\(\ge0\)
\(do\)\(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}< 0\)
\(\Rightarrow\)\(2014+x\le0\)
\(\Rightarrow\)\(x\le-2014\)
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)
\(\Leftrightarrow\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}+3>0\)
\(\Leftrightarrow\frac{x+1}{2953}+1+\frac{x+953}{2001}+1+\frac{x+2950}{4}+1>0\)
\(\Leftrightarrow\frac{x+1+2953}{2953}+\frac{x+953+2001}{2001}+\frac{x+2950+4}{4}>0\)
\(\Leftrightarrow\frac{x+2954}{2953}+\frac{x+2954}{2001}+\frac{x+2954}{4}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}\right)>0\)
Vì \(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}>0\)
Nên \(x+2954>0\)
\(\Leftrightarrow x>-2954\)
Vậy .........