K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

\(\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}>-3\)

\(\Leftrightarrow\frac{x+1}{2953}+\frac{x+953}{2001}+\frac{x+2950}{4}+3>0\)

\(\Leftrightarrow\frac{x+1}{2953}+1+\frac{x+953}{2001}+1+\frac{x+2950}{4}+1>0\)

\(\Leftrightarrow\frac{x+1+2953}{2953}+\frac{x+953+2001}{2001}+\frac{x+2950+4}{4}>0\)

\(\Leftrightarrow\frac{x+2954}{2953}+\frac{x+2954}{2001}+\frac{x+2954}{4}>0\)

\(\Leftrightarrow\left(x+2954\right)\left(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}\right)>0\)

Vì \(\frac{1}{2953}+\frac{1}{2001}+\frac{1}{4}>0\)

Nên \(x+2954>0\)

\(\Leftrightarrow x>-2954\)

Vậy .........

11 tháng 5 2018

Giải:

\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\)

\(\Leftrightarrow\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>0\)

\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1+\dfrac{x+2950}{4}+1>0\)

\(\Leftrightarrow\dfrac{x+1+2953}{2953}+\dfrac{x+953+2001}{2001}+\dfrac{x+2950+4}{4}>0\)

\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)

\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)

\(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\)

Nên \(x+2954>0\)

\(\Leftrightarrow x>-2954\)

Vậy ...

11 tháng 5 2018

\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>3\)

<=>\(\left(\dfrac{x+1}{2953}+1\right)+\left(\dfrac{x+953}{2001}+1\right)+\left(\dfrac{x+2950}{4}+1\right)>0\)

<=>\(\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)

<=>\(\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)

\(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\) nên \(x+2954>0\) <=> \(x>-2954\)

KL: ...

\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\\ \dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>-3+3\\ \dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\\ \left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\\ x+2954>0\\ x>-2954\)

a.2mx=0 <=> mx=0

•nếu m=0 thì nghiệm đúng với mọi x

•nếu \(m\ne0\) thì nghiệm đúng với x=0

4 tháng 4 2020

\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)

<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)

<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)

<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0

<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)

<=> x = 2004

Vậy S = {2004}

4 tháng 4 2020

đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)

 \(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)

\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)

\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)

=> x=1

8 tháng 8 2018

\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}>-2\)

\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1>-2+1+1\)

\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2955}{2001}>0\)

\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}\right)>0\)

\(\Leftrightarrow x+2954>0\\ \Leftrightarrow x>-2954\)

Vậy.......

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

1 tháng 4 2017

a, \(\Rightarrow\)\(1+\frac{x+3}{2011}\)\(+1+\frac{x+1}{2013}\)\(\ge1+\frac{x+10}{2004}+1+\frac{x+13}{2001}\)

\(\Rightarrow\)\(\frac{2011+x+3}{2011}+\frac{2013+x+1}{2013}\ge\frac{2004+x+10}{2004}+\frac{2001+x+13}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}\ge\frac{2014+x}{2004}+\frac{2014+x}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}-\frac{2014+x}{2004}+\frac{2014+x}{2001}\ge0\)

\(\Rightarrow\)\(\left(2014+x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}\right)\)\(\ge0\)

\(do\)\(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}< 0\)

\(\Rightarrow\)\(2014+x\le0\)

\(\Rightarrow\)\(x\le-2014\)

2 tháng 3 2018

2.

pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0

<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0

<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0

<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )

<=> x=2000

Tk mk nha

2 tháng 3 2018

1.

a, = (2x-1)^2-2.(2x-1)+1-4

    = (2x-1-1)^2-4

    = (2x-2)^2-4

    = (2x-2-2).(2x-2+2)

    = 2x.(2x-4)

b, = [x.(x+3)].[(x+1).(x+2)]

    = (x^2+3x).(x^2+3x+1)-8

    = (x^2+3x+1)^2-1-8

    = (x^2+3x+1)^2-9

    = (x^2+3x+1-3).(x^2+3x+1+3)

    = (x^2+3x-2).(x^2+3x+4)

    = ((x+1).(x+3).(x^2+3x-2)

Tk mk nha

31 tháng 1 2016

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)

<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)

=> x = -1999 hoặc x = - 2008