Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\)
\(\Leftrightarrow\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>0\)
\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1+\dfrac{x+2950}{4}+1>0\)
\(\Leftrightarrow\dfrac{x+1+2953}{2953}+\dfrac{x+953+2001}{2001}+\dfrac{x+2950+4}{4}>0\)
\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)
Vì \(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\)
Nên \(x+2954>0\)
\(\Leftrightarrow x>-2954\)
Vậy ...
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>3\)
<=>\(\left(\dfrac{x+1}{2953}+1\right)+\left(\dfrac{x+953}{2001}+1\right)+\left(\dfrac{x+2950}{4}+1\right)>0\)
<=>\(\dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\)
<=>\(\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\)
Vì \(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}>0\) nên \(x+2954>0\) <=> \(x>-2954\)
KL: ...
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}>-3\\ \dfrac{x+1}{2953}+\dfrac{x+953}{2001}+\dfrac{x+2950}{4}+3>-3+3\\ \dfrac{x+2954}{2953}+\dfrac{x+2954}{2001}+\dfrac{x+2954}{4}>0\\ \left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}+\dfrac{1}{4}\right)>0\\ x+2954>0\\ x>-2954\)
a.2mx=0 <=> mx=0
•nếu m=0 thì nghiệm đúng với mọi x
•nếu \(m\ne0\) thì nghiệm đúng với x=0
(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)
Vậy x>9 thì (x-5)(x-9)>0
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
a) \(\dfrac{4\left(x-4\right)}{12}\)-\(\dfrac{3x}{12}\)-\(\dfrac{12}{12}\) = 0
\(\dfrac{4x-16-3x-12}{12}=0\)
\(\dfrac{x-28}{12}\)\(=0\)
x - 28 = 0
x = 28
Vậy x = 28
\(\dfrac{2}{x-1}>1\)
\(\Leftrightarrow\dfrac{2}{x-1}-1>0\)
\(\Leftrightarrow\dfrac{2-x+1}{x-1}>0\)
\(\Leftrightarrow\dfrac{3-x}{x-1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 3\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow1< x< 3\)
:")))))))
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x+2x=24+1\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)
\(\Leftrightarrow17\left(x-1\right)=12\)
\(\Leftrightarrow17x-17=12\)
\(17x=12+17\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)
c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)
\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)
\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\)
\(\Leftrightarrow-x=-2003\)
\(\Leftrightarrow x=2003\)
Vậy phương trình có một nghiệm là x = 2003
a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)
\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow4x+2x+2x=1+24\)
\(\Leftrightarrow8x=25\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
Vậy S={\(\dfrac{25}{8}\)}
b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=6+3+12+8\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\dfrac{29}{17}\)
Vậy S={\(\dfrac{29}{17}\)}
\(\dfrac{x+1}{x-1}+\dfrac{1}{x+1}=0\\ < =>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0->\left(1\right)\\ ĐKXĐ:x^2-1\ne0< =>\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
\(\left(1\right)=>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0\\ =>\left(x+1\right)^2+\left(x-1\right)=0\\ < =>x^2+2x+1+x-1=0\\ < =>x^2+3x=0\\ < =>x\left(x+3\right)=0\\ =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-3\left(TMĐK\right)\end{matrix}\right.\)
Vậy: Tập nghiệm của pt là S= {-3;0}
\(\dfrac{x}{x-3}+\dfrac{6x}{9-x^2}=0\) (ĐKXĐ: \(x\ne\pm3\))
\(\Leftrightarrow\dfrac{-x\left(3+x\right)+6x}{9-x^2}=0\)
\(\Rightarrow-3x-x^2+6x=0\\ \Leftrightarrow x\left(-x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\-x+3=0\Leftrightarrow x=3\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0}
a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)
\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1
b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)
\(\Leftrightarrow x< 5\)
c) \(\dfrac{-1}{2x+3}< 0\)
dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp
\(\dfrac{x+1}{2953}+\dfrac{x+953}{2001}>-2\)
\(\Leftrightarrow\dfrac{x+1}{2953}+1+\dfrac{x+953}{2001}+1>-2+1+1\)
\(\Leftrightarrow\dfrac{x+2954}{2953}+\dfrac{x+2955}{2001}>0\)
\(\Leftrightarrow\left(x+2954\right)\left(\dfrac{1}{2953}+\dfrac{1}{2001}\right)>0\)
\(\Leftrightarrow x+2954>0\\ \Leftrightarrow x>-2954\)
Vậy.......