K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

A = 4 + 42 + 43 + 44 + . . . + 420

A = ( 4 + 42 ) + ( 43 + 44 ) + . . . + ( 419 + 420 )

A = 20 + 42 ( 4 + 42 ) + . . . + 418 ( 4 + 42 )

A = 20 + 42 . 20 + . . . + 418 . 20

A = 20 ( 1 + 42 + . . . + 418 ) chia hết cho 20

Vậy : A chia hết cho 20

12 tháng 8 2019

A=4+4^2+4^3+...+4^24

A=(4 + 4^2)+(4^3 + 4^4)+...+(4^23 + 4^24)

A=20.(1+4^4+...+4^24)chia hết cho 20

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$

$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$

$=(4+4^2)(1+4^2+...+4^{22})$

$=20(1+4^2+...+4^{22})\vdots 20$ 

----------------------------

$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$

$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$

$=(1+4+4^2)(4+4^4+...+4^{22})$

$=21(4+4^4+....+4^{22})\vdots 21$

----------------------

Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$

13 tháng 7 2017

A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)

  = \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)

\(4.21+.....+4^{22}.21\)

\(21\left(4+...+4^{22}\right)⋮21\)

Vậy A chia hết cho 21

Ai k mik mik k lại nha

13 tháng 7 2017

Lâu r chị k nhớ lắm nhé

CM A chia hết cho 20

A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)

A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)

   = 4(1+4) + 4^3(1+4) +...+4^23(1+4)

   = (1+4)(4+4^3+4^5+...+4^23)

   =5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)

Mà UCLN(4,5)=1 (3)

Vậy A chia hết cho 4.5 =20

CM A chia hết cho 21

A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)

   = 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)

   = (1+4+4^2)(4+4^4+...+4^22)

   = 21(4+4^4+...+4^22) chia hết cho 21

Vậy A chia hết cho 24.

Chúc e học giỏi!

20 tháng 12 2023

A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴

Số số hạng của A:

24 - 1 + 1 = 24

Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)

= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)

= 20 + 4².20 + ... + 4²².20

= 20.(1 + 4² + ... + 4²²) ⋮ 20

Vậy A⋮  20 (1)

Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4²².21

= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21

Vậy A ⋮ 21 (2)

Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)

⇒ A ⋮ 420

Vậy A chia hết cho 20; 21; 420

20 tháng 12 2023

loading...  loading...  

3 tháng 1 2023

\(A=4+4^2+4^3+...+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)

\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)

\(=1.20+4^3.20+....+4^{23}.20\)

\(=\left(1+4^3+...+4^{23}\right).20\)

\(\Rightarrow A⋮20\)

-------------------------------------------------------------------------

\(A=4+4^2+4^3+....+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)

\(=1.84+4^4.84+....+4^{22}.84\)

\(=\left(1+4^4+...+4^{22}\right).84\)

\(\Rightarrow A⋮84⋮21\)

---------------------------------------------------------------------------

\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)

\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)

\(=1.5460+4^7.5460+...4^{19}.5460\)

\(=\left(1+4^7+...+4^{19}\right).5460\)

\(\Rightarrow A⋮5460⋮420\)

3 tháng 1 2023

:0

chi mà giỏi zữ zayyyyyy;0