K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

khó thế

13 tháng 4 2020

Mình làm được rồi nha

 
7 tháng 5 2021

Gọi G là giao điểm của DE và CH.  I là giao điểm của  DE và OC. F là giao điểm của OC với (O)

Xét tam giác CGI và tam giác COH có:

\(\hept{\begin{cases}\widehat{HCO}chung\\\widehat{CIG}=\widehat{CHO}=90^0\end{cases}\Rightarrow\Delta CGI~\Delta COH\left(g-g\right)}\)

\(\Rightarrow\frac{CG}{CI}=\frac{CO}{CH}\)

\(\Rightarrow CG.CH=CO.CI\)

\(\Rightarrow2.CG.CH=2.CO.CI=CF.CI\)(1)

Áp dụng hệ thức lượng trong tam giác CEF vuông tại E có EI là đường cao ta có:

\(CF.CI=CE^2=CH^2\)(2) 

Từ (1) và (2) \(\Rightarrow2.CG.CH=CH^2\)

\(\Rightarrow2CG=CH\)

\(\Rightarrow G\)là trung điểm của CH mà DE cắt CH tại G

\(\Rightarrow DE\)đi qua trung điểm của CH

a: góc CDH=1/2*sđ cung CH=90 độ

góc CEH=1/2*sđ cung CH=90 độ

góc ACB=1/2*180=90 độ

Vì góc CDH=góc CEH=góc DCE=90 độ

nên CDHE là hình chữ nhật

b: ΔCHA vuông tại H có HD là đường cao

nên CD*CA=CH^2

ΔCHB vuông tại H

mà HE là đường cao

nên CE*CB=CH^2=CD*CA

CDHE là hình chữ nhật

=>góc CDE=góc CHE=góc CBA

=>góc ADE+góc ABE=180 độ

=>ABED nội tiếp

a: góc MHO+góc MKO=180 độ

=>MHOK nội tiêp

C,N,D,F cùng thuộc (O)

nên CNDF nội tiếp

b: Xét ΔCKM vuông tại K và ΔCHO vuông tại H có

góc KCM chung

=>ΔCKM đồng dạng voi ΔCHO

=>CK/CH=CM/CO

=>CK*CO=CH*CM

18 tháng 3 2020

Khá khó nên gạch xóa hơi nhiều

Link ảnh: https://imgur.com/a/cE1k5pV

9 tháng 5 2021

Ghê vậy bà

 

Dễ ! Tick đi ! Mình làm cho !!!

24 tháng 11 2015

oh my chuoi

em mới lớp 6

a: góc EHB+góc EDB=180 độ

=>BDHE nội tiếp

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC^2=AE*AD