Cho phân số A=\(\frac{-5}{n-2}\)với n là số nguyên
a,Tìm n để A tồn tại
b,Tìm n để A là số nguyên
c,Tìm n để số tự nhiên để A <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)P={x|x ne 1,x ne -1}`
`b)C,D in ZZ`
`**C in ZZ`
`=>2 vdots n-1`
`=>n-1 in Ư(2)={+-1,+-2}`
`=>n in {0,2,3,-1}(1)`
`**D in ZZ`
`=>n+4 vdots n+1`
`=>n+1+3 vdots n+1`
`=>3 vdots n+1`
`=>n+1 in Ư(3)={+-1,+-3}`
`=>n in {0,-2,2,-4}(2)`
`(1)(2)=>n in {0,2}`
Vậy `n in {0,2}` thì `C,D` đồng thời nguyên.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a, Để phân số A ko tồn tại thì phân số A phải có mẫu là 0
n - 2 = 0
n = 0 + 2
n = 2
hoặc n + 1 = 0
n = 0 - 1
n = -1
Vậy n có thể là { 2 ; -1 }
b, Ở câu a đã loại trừ đc phương án n để A ko tồn tại . Vậy để n tồn tại thì n khác 2 và -1
=> n thuộc { 0 ; 1 ; -2 ; 3 ; -3 ; 4 ; -4 ; ... }
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
a, phân số 3n -5 / n - 2 là số nguyên khi : 3n - 5 chia hết cho n - 2 => ( 2n - 5 ) chia hết cho 2x( n - 2 )
=> 2n - 5 chia hết cho 2n - 4
=> (2n - 4) - 1 chia hết cho 2n - 4
=> 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
=> n - 2 là ước của 1. ta có Ư(1) = { -1 ; 1 }
=> n - 2 = -1 => n = 1 ( thỏa mãn )
=> n - 2 = 1 => n = 3 ( thỏa mãn )
ta tìm được n = { 3 ; 1}
a)
Để A tồn tại thì mẫu số phải khác 0
Khi đó \(n-2\ne0\Rightarrow n\ne2\)
Vậy để A tồn tại thì \(n\ne2\)
b)
Để A là số nguyên hay \(-\frac{5}{n-2}\in Z\)
Để \(-\frac{5}{n-2}\in Z\Rightarrow n-2\inƯ\left(5\right)\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;7;1;-3\right\}\)
Vậy............
Để A < 0 thì \(-\frac{5}{n-2}< 0\)
\(\Rightarrow\frac{5}{n-2}>0\)
\(\Rightarrow n-2>0\Rightarrow n>2\)
Vậy để A < 0 thì n > 2