Tìm tham số m để pt x2+2(m+1)x+2m2+2m+1=0 vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT vô nghiệm <=> \(\Delta'< 0\)
<=> \(\left(m+1\right)^2-2m^2-2m-1< 0\)
<=> \(m^2+2m+1-2m^2-2m-1< 0\)
<=> \(-m^2< 0\)
\(\Leftrightarrow m\ne0\)
Δ=(2m+2)^2-4(2m^2+2m+1)
=4m^2+8m+4-8m^2-8m-4
=-4m^2
Để phương trình vô nghiệm thì -4m^2<0
=>m^2>0
=>m<>0
Để pt (2) vô nghiệm khi
\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)
Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)
a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)
b. Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)
c. Để phương trình có nghiệm kép thì:
\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)
Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)
d. Để phương trình có nghiệm phân biệt thì:
\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)
a, Để pt vô nghiệm
\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)
b, Để pt có nghiệm
\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
c, Để pt có nghiệm kép
\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)
\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)
d, Để pt có 2 nghiệm pb
\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)
a: Khi m=-1 thì phương trình sẽ là:
x^2-(-3-1)x+2-1-1=0
=>x^2+4x=0
=>x=0 hoặc x=-4
a.
Khi \(m=2\) pt trở thành:
\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
b.
Để pt có nghiệm \(x=-1\)
\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)
\(\Leftrightarrow-m^2+m+m^2-1=0\)
\(\Leftrightarrow m-1=0\)
\(\Leftrightarrow m=1\)
c.
Pt tương đương:
\(\left(m^2-m\right)x=-\left(m^2-1\right)\)
\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)
Pt vô nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)
\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)
Pt có vô số nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Lời giải:
a. Khi $m=2$ thì pt trở thành:
$2x+3=0\Leftrightarrow x=-\frac{3}{2}$
b. Để pt có nghiệm $x=-1$ thì:
$(m^2-m).(-1)+m^2-1=0$
$\Leftrightarrow m-1=0\Leftrightarrow m=1$
c.
PT $\Leftrightarrow (m^2-m)x=1-m^2$
Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)
Để PT có nghiệm thì: $m\neq 0$
a: khi m=1 thì pt sẽ là:
x^2+3x+1=0
=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)
b: Δ=(2m+1)^2-4m^2
=4m+1
Để phương trình có nghiệm kép thì 4m+1=0
=>m=-1/4
Khi m=-1/4 thì pt sẽ là:
x^2+x*(-1/4*2+1)+(-1/4)^2=0
=>x^2+1/2x+1/16=0
=>(x+1/4)^2=0
=>x+1/4=0
=>x=-1/4
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)
--> Phương trình luôn có 2 nghiệm phân biệt
--> Không có giá trị m để pt vô nghiệm
a, Thay m = 1 vào pt trên ta được
\(x^2+x-1=0\)
\(\Delta=1-4\left(-1\right)=1+5>0\)
Vậy pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)
b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )
Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)
hay ko có gtri nào của m để pt vô nghiệm
b) phương trình như trên
\(\Delta'=\left(m+1\right)^2-2m^2-2m-1=m^2+2m+1-2m-1=-m^2< 0\left(\forall m\right)\)
Zậy phương trình trên zô nghiệm zới mọi m
\(=>m\inℝ\)
Phương trình : x2 + 2. ( m + 1 ) .x + 2.m2 + 2.m + 1 = 0 ( a = 1 ; b=2 ( m + 1 ) ; c = 2.m2 + 2.m + 1 )
\(\Delta'=\left(m+1\right)^2-2m^2-2.m-1=m^2+2.m+1-2.m^2-2.m-1=\)\(-m^2< 0\forall m\)
Vậy phương trình trên vô nghiệm với mọi m => m thuộc R