(x-2)^3-(x-5)(x^2-5x+25)+6x^2=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2=5\)
\(\Leftrightarrow13x=13\)
hay x=1
\((x-2)^3-(x+5)(x^2-5x+25)+6x^2=11\\\Leftrightarrow (x-2)^3-(x+5)(x^2-5.x+5^2)+6x^2=11 \\\Leftrightarrow x^3-6x^2+12x-8 -(x^3+5^3)+6x^2-11=0 \\\Leftrightarrow 12x-144=0 \\\Leftrightarrow x=12\)
Vậy \(x=12\).
(x−2)3−(x+5)(x2−5x+25)+6x2=11
=>(x−2)3−(x+5)(x2−5.x+52)+6x2=11
=>x3−6x2+12x−8−(x3+53)+6x2−11=0
=>12x−144=0
=>x=12(x−2)3−(x+5)(x2−5x+25)+6x2=11
=>(x−2)3−(x+5)(x2−5.x+52)+6x2=11
=>x3−6x2+12x−8−(x3+53)+6x2−11=0
=>12x−144=0
=>x=12
Vậy x=12x=12.
cho tôi đúng đi
\(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
=>\(x^3-6x^2+12x-8-\left(x^3+125\right)+6x^2=11\)
=>\(x^3+12x-8-x^3-125=11\)
=>12x-133=11
=>12x=144
=>\(x=\dfrac{144}{12}=12\)
a, \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x+4\right)\left(x-4\right)=5\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27-x\left(x^2-16\right)=5\)
\(\Rightarrow x^3-27-x^3-16x=5\)
\(\Rightarrow-16x-27=5\)
\(\Rightarrow-16x=32\Rightarrow x=-2\)
b, \(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-5x^2+25x+5x^2-25x+125\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-x^3-125+6x^2=11\)
\(\Rightarrow12x-133=11\Rightarrow12x=144\Rightarrow x=12\)
Chúc bạn học tốt!!!
a)
\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x+4\right)\left(x-4\right)=5\)
\(\Rightarrow x^3-3^3-x.\left(x^2-16\right)=5\)
\(\Rightarrow x^3-27-x^3+16.x=5\)
\(\Rightarrow16x-27=5\)
\(\Rightarrow16x=32\)
\(\Rightarrow x=2\)
Vậy x = 2
b)
\(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-x^3-125+6x^2=11\)
\(\Rightarrow12x-133=11\)
\(\Rightarrow12x=144\)
\(\Rightarrow x=12\)
Vậy x = 12
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
a. 2x\(^2\)-8=0
2x\(^2\)=8
x\(^2\)=4
x=2
b.3x\(^3\)-5x=0
x(3x\(^2\)-5)=0
\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)
c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)
đặt t=x\(^2\) (t>0)
ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)
thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm
t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4
khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1
khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2
vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2
d)3x\(^2\)+6x-9=0
thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm
x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)
e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\) (ĐK: x#5; x#2 )
⇔\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)
⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0
⇔-7x\(^2\) - 6x + 46=0
Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0
\(\sqrt{\Delta'}=\sqrt{62}\)
vậy pt có 2 nghiệm phân biệt
x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)
x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)
vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......
câu g làm tương tự câu c
+(x-3)2-x2=11
x2-6x+9-x2=11
-6x+9=11
-6x=2
x=2:-6
x=-1/3
(6x-3)2-36x(x-1)=40
36x2-36x+9-36x2+36x=40
9=40
=> đề sai
(2-x)2-7(x2+11)=0
4-4x+x2-7x2-77=0
-73-4x-6x2
ht bt