Tìm số nguyên a biết \(2a+1⋮3a-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(a+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-10;-4;-2;4\right\}\)
b/ \(2a\inƯ\left(-10\right)\)
\(Ư\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Rightarrow a\in\left\{-5;-1;1;5\right\}\)do \(a\inℤ\)
c/ \(a+1\inƯ\left(3a+7\right)\Rightarrow3a+7⋮a+1\)
\(\Rightarrow3a+7-3\left(a+1\right)⋮a+1\)
\(\Leftrightarrow4⋮a+1\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow a\in\left\{-5;-3;-2;0;1;3\right\}\)
d/ \(2a+1\inƯ\left(3a+5\right)\Rightarrow3a+5⋮2a+1\)
\(\Rightarrow3a+5-\left(2a+1\right)⋮2a+1\)
\(\Leftrightarrow a+4⋮2a+1\)
\(\Rightarrow2\left(a+4\right)⋮2a+1\Leftrightarrow2a+8⋮2a+1\)
\(\Rightarrow2a+8-\left(2a+1\right)⋮2a+1\Leftrightarrow7⋮2a+1\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{-4;-1;0;3\right\}\)
a: A nguyên
=>3a+2 chia hết cho a
=>2 chia hết cho a
=>a thuộc {1;-1;2;-2}
b: B nguyuên
=>2a+2+3 chia hết cho a+1
=>a+1 thuộc {1;-1;3;-3}
=>a thuộc {0;-2;2;-4}
Ta có A = \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}=\frac{4a+26}{a+3}\)
\(=\frac{4a+12+14}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
Để \(A\inℤ\Leftrightarrow14⋮a+3\)
=> \(a+3\inƯ\left(14\right)\)
=> \(a+3\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
=> \(a\in\left\{-2;-4;-1;-5;4;-10;11;-17\right\}\)
Vậy \(a\in\left\{-2;-4;-1;-5;4;-10;11;-17\right\}\)
a) \(ab+2a-b=7\)
<=> \(a\left(b+2\right)-\left(b+2\right)=5\)
<=> \(\left(a-1\right)\left(b+2\right)=5\)
a-1 | -5 | -1 | 1 | 5 |
b+2 | -1 | -5 | 5 | 1 |
a | -4 | 0 | 2 | 6 |
b | -3 | -7 | 3 | -1 |
tm | tm | tm | tm |
Vậy có các cặp số nguyên ( a; b ) \(\in\){ ( -4; -3) , ( 0; -7) , ( 2; 3) , ( 6; -1) }
b) \(ab-2a+3b=-5\)
<=> \(\left(ab-2a\right)+\left(3b-6\right)=-5-6\)
<=> \(a\left(b-2\right)+3\left(b-2\right)=-11\)
<=> \(\left(b-2\right)\left(a+3\right)=-11\)
Kẻ bảng rồi làm. Hoặc chia các trường hợp
c) \(2ab-3a+b=10\)
<=> \(4ab-6a+2b=20\)( nhân cả hai vế với 2)
<=> \(2a\left(2b-3\right)+\left(2b-3\right)=20-3\)
<=> \(\left(2a+1\right)\left(2b-3\right)=17\)
Làm tiếp ....
\(2a+1⋮3a-5\)
\(\Rightarrow3\left(2a+1\right)⋮3a-5\)
\(6a+3⋮3a-5\)
\(2\left(3a-5\right)+13⋮3a-5\)
\(13⋮3a-5\)
\(3a-5\inƯ\left(13\right)\)
\(3a-5\in\left\{1;13;-1;-13\right\}\)
\(3a\in\left\{6;18;4;-8\right\}\)
\(a\in\left\{3;6\right\}\)
thanks