tìm gtnn của biểu thức: A=|2x-2014|+|2x-1|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Vì \(A=\frac{x^2-2x+2014}{\left(x+1\right)^2}\)
\(\Rightarrow x^2-2x+2014=A\left(x+1\right)^2\)
\(\Leftrightarrow x^2-2x+2014=Ax^2+2Ax+A\)
\(\Leftrightarrow\left(1-A\right)x^2-2\left(A+1\right)x+\left(2014-A\right)=0\)
\(\Delta=4\left(A+1\right)^2-4\left(1-A\right)\left(2014-A\right)\)
\(=8068A-8052\)
Vì A có GTNN nên phương trình có nghiệm
\(\Leftrightarrow8068A-8052\ge0\Leftrightarrow A\ge\frac{2013}{2017}\)
Dấu "=" khi \(x=\frac{2015}{2}\)
A=\(1-\frac{2}{x}+\frac{2014}{x^2}=1-\frac{2.\sqrt{2014}}{x}.\frac{1}{\sqrt{2014}}+\left(\frac{\sqrt{2014}}{x}\right)^2=\left(\frac{\sqrt{2014}}{x}\right)^2-\frac{2}{x}+\frac{1}{2014}+\frac{2013}{2014}=\left(\frac{\sqrt{2014}}{x}-\frac{1}{\sqrt{2014}}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)
Vậy Min A là 2013/2014 với x=2014
\(A=2x^2+2x+1=x^2+x^2+x+x+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\)
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\)nên \(Min\left(A\right)=\frac{1}{2}\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của \(A=\frac{1}{2}\equiv x=-\frac{1}{2}\)
\(\equiv\)là tại nhé
k cho minh nha
Ta có: \(A=\left|2x-1\right|+5\ge5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x-1\right|=0\Rightarrow x=\frac{1}{2}\)
Vậy Min(A) = 5 khi x = 1/2