Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.
Kẻ MD vuông góc với BC tại D.
a) Chứng minh tam giác BAD cân.
b) Chứng minh BM là đường trung trực của đoạn thẳng AD.
c) Kéo dài AB và MD cắt nhau tại E. Chứng minh tam giác MEC cân .
d) Chứng minh AD // EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))
Do đó: ΔBAM=ΔBDM(cạnh huyền-góc nhọn)
Suy ra: BA=BD(hai cạnh tương ứng)
Xét ΔABD có BA=BD(cmt)
nên ΔABD cân tại B(Định nghĩa tam giác cân)
b) Ta có: ΔBAM=ΔBDM(cmt)
nên MA=MD(hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MD(cmt)
nên M nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BM là đường trung trực của AD(Đpcm)
c) Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD(cmt)
\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔAME=ΔDMC(cạnh góc vuông-góc nhọn kề)
Suy ra: ME=MC(hai cạnh tương ứng)
Xét ΔMEC có ME=MC(cmt)
nên ΔMEC cân tại M(Định nghĩa tam giác cân)
d) Ta có: ΔAME=ΔDMC(cmt)
nên AE=DC(hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BD+DC=BC(D nằm giữa B và C)
mà BA=BD(cmt)
và AE=DC(cmt)
nên BE=BC
Xét ΔBEC có BE=BC(cmt)
nên ΔBEC cân tại B(Định nghĩa tam giác cân)
hay \(\widehat{BEC}=\dfrac{180^0-\widehat{EBC}}{2}\)(Số đo của một góc ở đáy trong ΔBEC cân tại B)(3)
Ta có: ΔBAD cân tại B(cmt)
\(\Leftrightarrow\widehat{BAD}=\dfrac{180^0-\widehat{ABD}}{2}\)(Số đo của một góc ở đáy trong ΔBDA cân tại B)
hay \(\widehat{BAD}=\dfrac{180^0-\widehat{EBC}}{2}\)(4)
Từ (3) và (4) suy ra \(\widehat{BAD}=\widehat{BEC}\)
mà \(\widehat{BAD}\) và \(\widehat{BEC}\) là hai góc ở vị trí đồng vị
nên AD//EC(Dấu hiệu nhận biết hai đường thẳng song song)
bài 1: cho ΔABC vuông tại B có góc A= 60 độ , vẽ đường phân giác AD (D thuộc BC). Qua D dựng đường thẳng vuông góc với AC tại M và ctaw đường thẳng AB tại N . Gọi I là giao điểm của AD và BM.chứng minh:
a)ΔBAD=ΔMAD
b)AD là đường trung trực của đoạn thẳng BM
c)ΔANC là tam giác đều
d)BI < ND
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF
- Hình bên dưới .
a,- Ta có : BM là phân giác của góc ABC .
=> \(\widehat{B_1}=\widehat{B_2}\)
- Xét \(\Delta BAM\) và \(\Delta BMD\) có :
\(\left\{{}\begin{matrix}\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\\BM=BM\\\widehat{B_1}=\widehat{B_2}\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta BAM\) = \(\Delta BMD\) ( Ch - cgn )
=> BA = BD , MA = MD ( cạnh tương ứng )
- Xét tam giác BAD có : BA = BD ( cmt )
=> Tam giác BAD cân tại B .
b, - Ta có : \(\left\{{}\begin{matrix}AB=BD\\MA=MD\end{matrix}\right.\) ( cmt )
=> BM là đường trung trực của AD .
c, - Ta có : \(\widehat{M_1}=\widehat{M_2}\) ( đối đính )
Mà \(\widehat{M_3}=\widehat{M_4}\) ( \(\Delta BAM\) = \(\Delta BMD\) )
=> \(\widehat{M_1}+\widehat{M_3}=\widehat{M_2}+\widehat{M_4}\)
=> \(\widehat{BME}=\widehat{BMC}\)
- Xét \(\Delta BME\) và \(\Delta BMC\) có :
\(\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}\left(cmt\right)\\BM=BM\\\widehat{BME}=\widehat{BMC}\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta BME\) = \(\Delta BMC\) ( g - c - g )
=> EM = CM ( cạnh tương ứng )
- Xét tam giác MEC có : EM = CM ( cmt )
=> Tam giác MEC cân tại M .
- Ta có : Tam giác BAC cân tại B .
=> Góc BAD = ( 180o - góc ABD ) /2
CMTT ta được : Góc BEC = ( 180o - góc ABD ) /2
=> Góc BAD = Góc BEC .
Mà chúng ở vị trí đồng vị .
=> AD // EC