Cho a,b,c là ba số t/m a+b+c=1 và \(a^3+b^3+c^3=1 \). CM \(a^{2011}+b^{2011}+c^{2011}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0
b=-c
a=-b
a=-1
M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)
vì
ta có 3 trường hợp
b=-c nên (b^7+c^7=0)
a=-b nên (a^3+b^3)=0
a=-1nên (a^2011+b^2011)=0
M=0
Từ \(a^3+b^3+c^3=3abc\)\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
*)Xét \(a=b=c\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=1+1+1=3\)
*)Xét \(a+b+c=0\Rightarrow\)\(\left\{\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)
(*) và (1)\(\Rightarrow P=1\)
a/ Ta có :
\(\left(x+y+t\right)-x^3-y^3-z^3=2011\)
\(\Leftrightarrow3\left(x+y\right)\left(y+t\right)\left(t+x\right)=2011\)
\(\Leftrightarrow\left(x+y\right)\left(y+t\right)\left(t+x\right)=\dfrac{2011}{3}\)
Thay vào D ta được :
\(D=\dfrac{2011}{\dfrac{2011}{3}}=3\)
Vậy.....
b/ Ta có :
\(H=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow10899H=10899\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow10899H=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)
\(\Leftrightarrow10899H=1+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+1+\dfrac{b}{c}+\dfrac{c}{b}+1\)
\(\Leftrightarrow10899H=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
Áp dụng BĐT Cô - si cho các số dương ta có ;
\(+,\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
+, \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}=2\)
+, \(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}=2\)
Cộng vế với vế của các BĐT ta có :
\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}\ge6\)
\(\Leftrightarrow10899H\ge9\)
\(\Leftrightarrow H\ge\dfrac{1}{2011}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=6033\)
Vậy..
b ) Do a ; b ; c dương \(\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\) dương
Áp dụng BĐT Cô - si cho 3 số dương , ta có :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Theo GT : \(a+b+c=18099\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{18099}=\dfrac{1}{2011}\)
\(\Rightarrow H\ge\dfrac{1}{2011}\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=18099\\a=b=c\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=6033\)
Vậy ...
\(\left(a+b+c\right)^2=1\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
\(\Rightarrow ab+bc+ca=0\) (1)
Mặt khác ta có kết quả quen thuộc:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow3abc=ab+bc+ca=0\)
\(\Rightarrow abc=0\)
Do vai trò của a; b; c là như nhau, giả sử \(a=0\)
Thay vào (1) \(\Rightarrow bc=0\)
Giả sử \(b=0\)
Thay vào \(a+b+c=1\Rightarrow c=1\)
Vậy \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
\(\Rightarrow S=1\)