K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)

Để phương trình có 2 nghiệm x1; x2 điều kiện là: 

\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)

Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)

<=> \(m^2+m-2=0\)

<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+1=1>0\)

Vậy: Phương trình luôn có hai nghiệm phân biệt với mọi m

Theo đề, ta có: 

\(\left\{{}\begin{matrix}3x_1-x_2=0\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=2m\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m\\x_2=\dfrac{3}{2}m\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m^2-1\)

\(\Leftrightarrow m^2\cdot\dfrac{3}{4}-m^2=-1\)

\(\Leftrightarrow m^2=4\)

hay \(m\in\left\{2;-2\right\}\)

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

30 tháng 4 2022

Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?

30 tháng 4 2022

Hay là \(\left(x_1^2-2mx_2+3\right)\left(x_2^2-2mx_1-2\right)=50\) bạn nhỉ?

19 tháng 1 2024

(a) Khi \(m=2,\left(1\right)\Leftrightarrow x^2-4x-5=0\left(2\right)\).

Phương trình (2) có \(a-b+c=1-\left(-4\right)+\left(-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=5\end{matrix}\right.\).

Vậy: Khi \(m=2,S=\left\{-1;5\right\}\).

 

(b) Điều kiện: \(x_1,x_2\ne0\Rightarrow m\in R\)

Phương trình có nghiệm khi:

\(\Delta'=\left(-m\right)^2-1\cdot\left(-m^2-1\right)\ge0\)

\(\Leftrightarrow2m^2+1\ge0\left(LĐ\right)\)

Suy ra, phương trình (1) có nghiệm với mọi \(m\).

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)

Theo đề: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-\dfrac{5}{2}\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\dfrac{5}{2}\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow2\left(2m\right)^2+\left(-m^2-1\right)=0\)

\(\Leftrightarrow7m^2=1\Leftrightarrow m=\pm\dfrac{\sqrt{7}}{7}\) (thỏa mãn).

Vậy: \(m=\pm\dfrac{\sqrt{7}}{7}.\)

19 tháng 1 2024

bạn giải thích kĩ hộ mik vói cái <=> cuối cùng sao ra như vậy

loading...

11 tháng 3 2021

Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).

Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)

(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).

Kết hợp vs (1) ta có m < -1.

17 tháng 7 2021

a, với =-3

\(=>x^2-6x+6=0\)

\(\Delta=\left(-6\right)^2-4.6=12>0\)

=>pt có 2 nghiệm phân biệt x3,x4

\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)

b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)

pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi

\(-4m>0< =>m< 0\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)

có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)

\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)

\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)

\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)

\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)

Vậy \(m\in\varnothing\)

 

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:
a. Với $m=-3$ thì pt trở thành:

$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$

b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$

$\Leftrightarrow m\leq 0$

Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$

Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$

$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$

$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$

$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$

$\Leftrightarrow 8m^2=32$

$\Leftrightarrow m^2=4$

$\Rightarrow m=-2$ (do $m\leq 0$)

Vây.........