Tìm GTLN hoặc GTNN của biểu thức sau (nếu có)
\(4x^2+4x+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 4x2 + 4x + 5
M = (4x2 + 4x + 1) + 4
M = (2x + 1)2 + 4
Vì (2x + 1)2 ≥ 0
=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4
=> GTNN của M bằng 4
Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của M bằng 4
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
Ta có: \(4x^2+4x+5\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1+4\)
\(=\left(2x+1\right)^2+4\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi
\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(4x^2+4x+5\) là 4 khi \(x=\frac{-1}{2}\)
\(4x^2+4x+1+4=\left(2x+1\right)^2+4\ge4\)
Vậy MIN =4 với x=-1/2
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
B = 4x2 + 8x
= 4( x2 + 2x + 1 ) - 4
= 4( x + 1 )2 - 4
4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinB = -4 <=> x = -1
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
Ta có : C = 4x2 + 25y2 - 4x + 30y
=> C = 4x2 - 4x + 25y2 + 30y
=> C = (4x2 - 4x + 1) + (25y2 + 30y + 9) - 10
=> C = (2x - 1)2 + (5y + 3)2 - 10
Mà \(\left(2x-1\right)^2;\left(5y+3\right)^2\ge0\forall x\)
Nên C = (2x - 1)2 + (5y + 3)2 - 10 \(\ge-10\forall x\)
Vậy giá trị nhỏ nhất của C là -10 tại x = \(\frac{1}{2}\) và y = \(-\frac{3}{5}\)
Tìm GTNN hoặc GTLN của biểu thức sau:
C= |x-3| (2-|x-3|)
D= (x-1)(x+5)(x^2 +4x+5)
G= (x-3)^2 + (x-2)^2
- Đặt \(A=4x^2+4x+5\)
- Ta có: \(A=4x^2+4x+5\)
\(\Leftrightarrow A=\left(4x^2+4x+1\right)+4\)
\(\Leftrightarrow A=\left(2x+1\right)^2+4\)
- Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(2x+1\right)^2+4\ge4\forall x\)
\(\Rightarrow A_{min}=4\)
- Dấu "=" xảy ra khi: \(2x+1=0\)\(\Leftrightarrow\)\(2x=-1\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\left(TM\right)\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\)