K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

Gọi UCLN(3n+5;n+1) là a

Ta có:3n+5 chia hết cho a

           n+1 chia hết cho a

=>3n+5 chia hết cho a

    3n+3 chia hết cho a

=>3n+5 - 3n+3 chia hết cho a

            2 chia hết cho a

Nhưng 3n+5 và 3n+3 không chia hết cho 2 nên UCLN(3n+5;n+1)=1

Tick nha!

14 tháng 11 2020

Ta coi như sau......................................

 \(d\inƯC\left\{2n+3;3n+1\right\}\)

\(\Rightarrow2n+3;3n+1⋮d\)

\(\Rightarrow\left\{\left(2n+3\right)-\left(3n+1\right)\right\}⋮d\)

\(\Rightarrow\left\{3\left(2n+3\right)-2\left(3n+1\right)\right\}⋮d\)

\(\Rightarrow\left\{\left(6n+9\right)-\left(6n+2\right)\right\}⋮d\)

\(\Rightarrow7⋮d\)

\(\Rightarrow d\inƯ\left(7\right)\)

\(Ư\left(7\right)=\left\{1;7\right\}\)

\(\Rightarrow d=\left\{1;7\right\}\)

\(\RightarrowƯC\left(2n+3;3n+1\right)=\left\{1;7\right\}\)

10 tháng 8 2016

Gọi ƯCLN của 2n + 1 và 3n + 1 là d

Khi đó : 2n + 1 chai hết cho d ; 3n + 1 chia hết cho d

<=> 3.(2n + 1) chia hết cho d ; 2.(3n + 1) chia hết cho d

=> 6n + 3 chai hết cho d và 6n + 2 chia hết cho d

=> (6n + 3) - (6n + 2) = 1 chia hetes cho d

=> 1 chia hết cho d

=> ƯCLN (2n + 1;3n + 1) = 1

=> ƯC(2n + 1;3n + 1) = {1}  

10 tháng 8 2016

Đặt UCLN của (2n+1, 3n+1) = d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d

=> 1 chia hết cho d

Vậy ước chung của 2n+1 và 3n+1 là 1

10 tháng 11 2015

a) Đặt UCLN(2n + 1 ; 3n + 1) = d

2n + 1 chia hết cho d => 6n + 3 chia hết cho d

3n + 1 chia hết cho d => 6n + 2 chia hết cho d 

UCLN(6n + 3 ; 6n + 2 ) = 1

Do đó d = 1; Vậy UCLN(2n + 1 ; 3n + 1) = 1

 

24 tháng 10 2015

1)

Ta có:

x + 10 chia hết cho 5

10 chia hết cho 5

\(\Rightarrow\)x chia hết cho 5

 

x - 18 chia hết cho 6

18 chia hết cho 6

\(\Rightarrow\)x chia hết cho 6

 

x + 21 chia hết cho 7

21 chia hết cho 7

\(\Rightarrow\)x chia hết cho 7

\(\Rightarrow\)\(\in\)BC ( 5;6;7 )

BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }

Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630

 

 

10 tháng 8 2016

Gọi d = ƯCLN(2n + 1; 3n + 1) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 1 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 1) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 2 chia hết cho d

=> (6n + 3) - (6n + 2) chia hết cho d

=> 6n + 3 - 6n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯC(2n + 1; 3n + 1) = Ư(1) = {1 ; -1}

Nếu bn chưa học tập hợp Z thì có thể loại bỏ giá trị -1