Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
a, - Ta có : Tứ giác AHIK là hình vuông .
=> \(\widehat{KAH}=90^o\)
=> \(\widehat{A_1}+\widehat{A_2}=90^o\)
Mà tam giác ABC vuông tại A .
=> \(\widehat{DAC}=90^o\)
=> \(\widehat{A_2}+\widehat{A_3}=90^o\)
=> \(\widehat{A_1}=\widehat{A_3}\left(+\widehat{A_2}=90^o\right)\)
- Xét \(\Delta AKD\) và \(\Delta AHC\) có :
\(\left\{{}\begin{matrix}\widehat{A_1}=\widehat{A_3}\left(cmt\right)\\AK=AH\left(gt\right)\\\widehat{DKA}=\widehat{CHA}\left(=90^o\right)\end{matrix}\right.\)
=> \(\Delta AKD\) = \(\Delta AHC\) ( Cgv - gn )
=> AD = AC ( cạnh tương ứng )
b,
b/Xét tứ giác OKIH có:
\(\widehat{KIH}+\widehat{IKH}+\widehat{KOH}+\widehat{OHI}=540\).Vì AHIK là h/vuông nên
\(\Leftrightarrow90+45+45+\widehat{KOH}=540\Rightarrow\widehat{KOH}=180\)
Suy ra KOH thẳng hàng.Mà H,K nằm trên đ/trung trực AI( AHIK là h/vuông) nên O cũng nằm trên đ/trung trực AI
\(\RightarrowĐPCM\)
O nằm trên đ/trung trực AI nên ta có:
\(OA=OI=\frac{1}{2}AE\)( Vì hbh ADEC có góc A vuông và AD=DC nên ADEC là h/vuông)
Mà OI=1/2AE suy ra \(\widehat{AIE}=90\)( Vì OI là đ/trung tuyến)
\(\Rightarrow AI\perp IE\)(1)
Ta lại có AHIK là h/vuông nên \(AI\perp HK\left(2\right)\)
Từ (1) và (2) suy ra IE//HK suy ra KOEI là h/thang