cho tam giác nhọn ABC có độ dài ab,ac,bc là các số nguyên liên tiếp(ab<ac<bc). Chứng minh rằng đường cao BH chia cạnh AC thành hai đoạn có hiệu độ dài là 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
À rồi, giả thiết là AB < AC < BC. Ghi đề cần thận hơn nhé
Vì tam giác ABC nhọn => chân đường cao H kẻ từ B thuộc AC => BH + CH = AC
Giả sử AB, AC, BC có số đo lần lượt là a, a + 1, a + 2
Theo định lý Py-ta-go ta có: CH2 - AH2 = (BC2 - BH2) - (AB2 - BH2) = BC2 - AB2 = (a + 2)2 - a2 = 4(a+1)
Mà ta lại có: CH2 - AH2 = (CH - AH)(CH + AH) = (CH - AH).AC = (CH - AH).(a + 1)
=> (CH - AH).(a + 1) = 4(a + 1)
=> CH - AH = 4
Vậy bài toán đã được chứng minh
AC=2/5AB=6(cm)
Xét ΔABC có AB-AC<BC<AB+AC
=>15-6<BC<15+6
=>9<BC<21
mà BC chia hết cho 3,5
nên BC=15(cm)
=>BC=AB
=>ΔABC cân tại B
Gọi độ dài cạnh AB là x (x>0). Theo bất đẳng thức tam giác ta có:
8 − 1 < x < 8 + 1 ⇔ 7 < x < 9 Vì x là số nguyên nên x = 8. Vậy độ dài cạnh AB = 8cm
Tam giác ABC có AB = AC = 8cm nên tam giác ABC cân tại A.
Chọn đáp án B.