Bài 6. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng: a. ∆ABE = ∆ACE b. AE là đường trung trực của đoạn thẳng BC. Bài 7. Cho ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng: a. ∆BDF = ∆EDC. b. BF = EC. c. F, D, E thẳng hàng. d. AD ⊥ FC Bài 8. Cho góc nhọn xOy. Trên tia Ox, lấy 2 điểm A và C. Trên tia Oy lấy 2 điểm B và D sao cho OA = OB; OC = OD. (A nằm giữa O và C; B nằm giữa O và D). a. Chứng minh ∆OAD = ∆OBC b. So sánh 2 góc CAD và CBD. Bài 9. Cho ΔABC vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. a. Chứng minh ΔABC = ΔABD b. Trên tia đối của tia AB, lấy điểm M. Chứng minh ΔMBD = ΔMBC. Bài 10. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh: a. ΔAOI = ΔBOI. b. AB ⊥ OI. Bài 11. Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME = MA. a. Chứng minh AC // BE. b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. Chứng minh 3 điểm I, M, K thẳng hàng.
Hình như phím Enter của bạn có bị vấn đề ko?
Bài 6:
a) Chứng minh ΔABE=ΔACE
Xét ΔABE và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}=\widehat{CAE}\)(AE là tia phân giác của \(\widehat{BAC}\))
AE là cạnh chung
Do đó: ΔABE=ΔACE(c-g-c)
b) Chứng minh AE là đường trung trực của BC
Ta có: AB=AC(ΔABC cân tại A)
⇒A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ΔABE=ΔACE(cmt)
⇒BE=CE(hai cạnh tương ứng)
⇒E nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của BC(đpcm)