Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AB=AC
nên ΔABC cân tại A
hay \(\widehat{ABE}=\widehat{ACE}\)
Ta có: ΔABC cân tại A
mà AE là đường phân giác
nên AE là đường cao
Xét tg ABE và tg ACE có:
AB = AC (gt).
Góc BAE = Góc CAE (AE là phân giác của góc BAC).
AE chung.
=> tg ABE = tg ACE (c - g - c).
b) Xét tg ABC có: AB = AC (gt)
Tg ABC cân tại A.
Xét tg ABC cân tại A có:
AE là phân giác của góc BAC (gt).
=> AE đường trung trực của đoạn thẳng BC (tính chất các đường trong tg cân).
+) Vì tam giác ABC có AB = AC ( GT )
=> ABC là tam giác cân tại A ( định nghĩa )
=> Góc ABE = góc ACE ( tính chất )
Hình tự vẽ
mà bài dễ thế này cũng hỏi chả chịu động não qua dựa dẫm vào mạng
Xét \(\Delta ABE\)và \(\Delta ACE\)có :
AB = AC ( GT )
\(\widehat{BAE}=\widehat{CAE}\)( AE là phân giác \(\widehat{BAC}\))
Cạnh AE chung
\(\Rightarrow\Delta ABE=\Delta ACE\left(c.g.c\right)\)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC