K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

NV
26 tháng 12 2020

\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)

 

NV
26 tháng 1 2022

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

15 tháng 11 2018

Đáp án C.

Đặt z = a + b i , a , b ∈ ℝ . Ta có 1 − i z 2 + 2 + 2 i z 2 + 2 z z + i = 0 .

Với a 2 + b 2 > 0 ⇒ z ≠ 0 ; z 2 = z . z ¯ . Ta có

1 ⇔ 1 − i . z . z ¯ + 2 + 2 i z 2 + 2 z z + i = 0 ⇔ 1 − i z ¯ + 2 + 2 i z + 2 z + i = 0

⇔ 1 − i a − b i + 2 + 2 i a + b i + 2 a + b + 1 i = 0

⇔ a − b − a + b i + 2 a − 2 b + 2 a + 2 b i + 2 a + 2 b + 2 i = 0

⇔ 5 a − 3 b + a + 3 b + i = 0 ⇔ 5 a − 3 b = 0 a + 3 b = − 2 ⇔ a = − 1 3 b = − 5 9 ⇒ F = 3 5

 

29 tháng 11 2018

28 tháng 12 2019

a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3

⇔ x ≤ 3/4

Vậy: x ≤ 3/4

b) a, b > 0

Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)

Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)

Cộng (1) và (2) vế theo vế, ta được:

2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2

8 tháng 3 2021

Mk ms tìm được GTNN thôi!

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:

a2 + b2 \(\ge\) 2ab

\(\Leftrightarrow\) 1 \(\ge\) 2ab

\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0

\(\Leftrightarrow\) 1 - ab \(\ge\) ab

\(\Rightarrow\) A \(\ge\) ab(a + b)

Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)

\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)

Vậy ...

Chúc bn học tốt!

NV
8 tháng 3 2021

\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)

\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)

Cộng vế:

\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)

\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)

\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)